1、第一章 1.解释下列名词 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的 最大弹性变形功表示。 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为 循环韧性。 包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 塑性:金属材料断 裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。脆性:指金属材料受力时没有发生塑性变形而直
2、接断裂的能力加工硬化:金属材料在再结晶温度以下塑性变形时 ,由于晶粒发生滑移 , 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现 象。 解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面 (即解理面)分离。 2.解释下列力学性能指标的意义弹性模量) ; (2) p(规定非比例伸长应力) 、 e(弹性极限) 、 s(屈服强度) 、 0.2(屈服强度) ;(3) b(抗拉强度) ; (4 ) n(加工硬化指数); ( 5) (断后伸长率) 、 (断面收缩率) 4.常用的标准试样有 5 倍和 10 倍,其延伸率分别用 5 和 10 表示,说
3、明为什么 5 10。 答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的 比例,尺寸越短,它的断后伸长率越大。 5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。6.今有
4、45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么? 答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易 成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义? 答: (1) 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。 (2)理论解释:首先,在原先加载变形时,位错源在滑移面 上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,
5、当背应力足够大 时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位 错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形 再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工 艺需要考虑包申格效应。例如,大型精油输气管道管线的 UOE 制造工艺:U 阶段是将原始 板材冲压弯曲成 U 形,O 阶段是将 U 形板材径向压缩成 O 形,再进行周边焊接,最后将管 子内径进行扩展,达到给定大小,即 E 阶段。按 UOE 工艺制造的管子,希望材料具有非常小的或者几乎没有包申格效应,以免管子成型后强度的损失。其次,包申格
6、效应大的材料, 内应力大。例如,铁素体+马氏体的双相钢对氢脆就比较敏感,而普通低碳钢或低合金高强度钢对氢脆不敏感,这是因为双相钢中铁素体周围有高密度位错和内应力, 氢原子与长程内应力交互作用导致氢脆。 包申格效应和材料的疲劳强度也有密切关系。8.产生颈缩的应力条件是什么?要抑制颈缩的发生有哪些方法? 答:当加工硬化速率等于该处的真应力时就开始颈缩。措施:提高加工硬化指数。10.试用位错理论解释:粗晶粒不仅屈服强度低,断裂塑性野地;而细晶粒不仅使材料的屈 服强度提高,断裂塑性也提高。 答:主要是因为晶粒细化之后,与粗晶粒相比,晶粒取向更为均匀,从而避免了过早出现应 力集中引起的开裂,提高了韧性。
7、 11.韧性断口由几部分组成?其形成过程如何 答:由纤维区、放射区和剪切唇三个区域组成。 第二章 1.解释下列名词:应力状态软性系数:材料最大切应力与最大正应力的比值,记为 。 布氏硬度:用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。 洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度。维氏硬度:以两相对面夹角为 136的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。努氏硬度:采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。 肖氏硬度:采动载荷试验法,根据重锤回跳高度表证的金属硬度。 缺口效应:缺口材料在静
8、载荷作用下,缺口截面上的应力状态发生的变化。 缺口敏感度:金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。 2.说明下列性能指标的意义: bc(材料的抗压强度) ; (2 ) bb(材料的抗弯强度) ; (3 ) s(材料的扭转屈服点) ; (4 ) s(抗扭强度) ; (5 ) p(扭转比例极限) ; (6) bn(抗拉强度) ; (7)HBS(压头为淬 火钢球的材料的布氏硬度) ; (8 )HBW:压头为硬质合金球的材料的布氏硬度; (9)HRA (材料的洛氏硬度) ;HRB(材料的洛氏硬度) ;HRC(材料的洛氏硬度) ; (10 )HV(材料 的
9、维氏硬度) ; (11)HK (材料的努氏硬度) ; (12)HS(材料的肖氏硬度) ; (13)K(理论 应力集中系数) ; (14 )NSR(缺口敏感度) 3.今有如下零件和材料等需测定硬度,试说明选用何种硬度试验方法为宜: (1)渗碳层的硬度分布 -HK 或-显微 HV(2)淬火钢-HRC(3)灰铸铁-HB(4)鉴 别钢中的隐晶马氏体和残余奥氏体-显微 HV 或者 HK(5 )仪表小黄铜齿轮-HV( 6) 龙门刨床导轨-HS (肖氏硬度) 或 HL(里氏硬度( ) 7) 渗氮层-HV (8) 高速钢刀具-HRC (9 )退火态低碳钢-HB(10)硬质合金-HRA4.说明几何强化现象的成因
10、,并说明其本质与形变强化有何不同。 6.试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。 拉伸: 特点:温度、应力状态和加载速率确定,采用光滑圆柱试样,试验简单,应力状态 软性系数较硬。 应用范围:塑性变形抗力和切断强度较低的塑性材料。 压缩:特点:应力状态软,一般都能产生塑性变形,试样常沿与轴线呈 45方向产生断裂,具有切断特征。应用范围:脆性材料,以观察脆性材料在韧性状态下所表现的力学行为。 弯曲:特点:弯曲试样形状简单,操作方便;不存在拉伸试验时试样轴线与力偏斜问题,没有附加应 力影响试验结果,可用试样弯曲挠度显示材料的塑性;弯曲试样表面应力最大,可灵敏地反映材料表面缺陷。应用
11、范围:测定铸铁、铸造合金、工具钢及硬质合金等脆性与低塑性材料的强度和显示塑性的差别。也常用于比较和鉴别渗碳和表面淬火等化学热处理机件的质量和性能。扭转:特点:应力状态软性系数为 0.8,比拉伸时大,易于显示金属的塑性行为;试样在整个长度上的塑性变形时均匀,没有紧缩现象,能实现大塑性变形量下的试验;较能敏感地 反映出金属表面缺陷和及表面硬化层的性能; 试样所承受的最大正应力与最大切应力大体相等。应用范围:用来研究金属在热加工条件下的流变性能和断裂性能,评定材料的热压力加工型,并未确定生产条件下的热加工工艺参数提供依据;研究或检验热处理工件的表面质量和各种表面强化工艺的效果。 7、第三章1.缺口会
12、引起哪些力学响应? 答:材料截面上缺口的存在,使得在缺口的根部产生应力集中、双向或三向应力、应力集中 和应变集中,并试样的屈服强度升高,塑性降低。2.比较平面应力和平面应变的概念。 答:平面应力:只在平面内有应力,与该面垂直方向的应力可忽略,例如薄板拉压问题。平 面应变:只在平面内有应变,与该面垂直方向的应变可忽略,例如水坝侧向水压问题。具体 说来:平面应力是指所有的应力都在一个平面内,如果平面是 OXY 平面,那么只有正应力 x, y,剪应力 xy(它们都在一个平面内) ,没有 z, yz, zx。平面应变是指所有的 应变都在一个平面内,同样如果平面是 OXY 平面,则只有正应变 x, y
13、和剪应变 xy, 而没有 z, yz, zx。 3.如何评定材料的缺口敏感性: 答:材料的缺口敏感性,可通过缺口静拉伸、偏斜拉伸、静弯曲、冲击等方法加以评定。 简述根据韧脆转变温度分析机件脆断失效的优缺点。缺点:脆性断裂一般断裂时间较短,突发性的断裂,因此在使用时一旦超过屈服强度就会很快断裂 优点:脆性断裂在常温下表现为脆性,因此材料的变形随温度降低时变化不大,这样在交变温度 的使用环境下,就不需要考虑材料的冷脆温度7.何谓低温脆性?哪些材料易表现出低温脆性?工程上,有哪些方法评定材料低温脆性? 答:在低温下,材料由韧性状态转变为脆性状态的现象称为低温脆性。只有以体心立方金属 为基的冷脆金属才
14、具有明显的低温脆性,如中低强度钢和锌等。而面心立方金属,如铝等, 没有明显的低温脆性。工程上常采用低温脆性通常用脆性转变温度,能量准则,断口形貌准 则,断口变形特征准则评定。 8.说明为什么焊接船只比铆接船只易发生脆性破坏? 答:焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷, 增加裂纹敏感度,增加材料的脆性,容易发生脆性断裂。10.细化晶粒尺寸可以降低脆性转变温度或者说改善材料低温韧性,为什么?答:晶界是裂纹扩展的阻力;晶界增多有利于降低应力集中,降低晶界上杂质度,避免产生沿晶界脆性断裂。所以可以提高材料的韧性。第四章 1.解释下列名词: (1)低应力脆断:高强
15、度、超高强度钢的机件,中低强度钢的大型、重型机件在屈服应力以下发生的断裂; (2)I 型裂纹:拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展的裂纹。 (3)应力强度因子 KI:在裂纹尖端区域各点的应力分量除了决定于位置外, 尚与强度因子有关,对于某一确定的点,其应力分量由确定,越大,则应力场各点应力分量也越大,这样就可以表示应力场的强弱程度,称为应力场强度因子。 “I”表示 I 型裂纹。 (4) 裂纹扩展 K 判据:裂纹在受力时只要满足,就会发生脆性断裂反之,即使存在裂纹,若也不会断裂。 (5)裂纹扩展 G 判据:GI=GIC,当满足上述条件时裂纹失稳扩展断裂。 (6)J 积分
16、:有两种定义或表达式:一是线积分:二是形变功率差。P149 (7)裂纹扩展 J 判据:只要满足JI=JIC,裂纹(或构件)就会断裂。 (8)COD:裂纹张开位移。 (9)COD 判据:当满足,裂纹开始扩展。2、说明下列断裂韧度指标的意义及其相互关系和 CK答: 临界或失稳状态的 记作 或 , 为平面应变下的断裂韧度,表示在平面KCCK应变条件下材料抵抗裂纹失稳扩展的能力。 为平面应力断裂韧度,表示在平面应力条件下材料抵抗裂纹失稳扩展的能力。它们都是 型裂纹的材料裂纹韧性指标,但 值与试样厚度有关。当试样厚 C度增加,使裂纹尖端达到平面应变状态时,断裂韧度趋于一稳定的最低值,即为 ,它与试样厚度
17、无关,而是真正的材料常数。CK答:当 增加到某一临界值时, 能克服裂纹失稳扩展的阻力,则裂纹失稳扩G G展断裂。将 的临界值记作 ,称断裂韧度,表示材料阻止裂纹失稳扩展时单位面积所 c消耗的能量,其单位与 相同,MPamG :是材料的断裂韧度,表示材料抵抗裂纹开始扩展的能力,其单位与GIC 相同。:是材料的断裂韧度,表示材料阻止裂纹开始扩展的能力.c判据和 判据一样都是裂纹开始扩展的裂纹判据,而不是裂纹失稳扩展的裂纹判据。4、试述低应力脆断的原因及防止方法。答: 低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹,从而使机件在低于屈服应力的情况发生断裂。 预防措施:将
18、断裂判据用于机件的设计上,在给定裂纹尺寸的情况下,确定机件允许的最大工作应力,或者当机件的工作应力确定后,根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸。5、试述应力场强度因子的意义及典型裂纹 的表达式K答:P121 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹:Ka;有限宽板单边直裂纹: 当 b a 时, ;)(bafK )(f a2.1受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸:)(62/3bafM;无限大物体表面有半椭圆裂纹,远处均受拉伸:A 点4/122)cos(sinaK的 。 1.6、试述 K 判据的意义及用途。答: K 判据解决了经典的
19、强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。K 判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来,可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。11 的意义:表示裂纹张开位移。表达式 。)2sec(ln8sEa13 试述 KIC 与材料强度 塑形之间的关系总的来说,断裂韧度随韧度随强度的升高而降低19. 若一薄板内有一条长 3mm 的裂纹,且 a0=310-8mm,试求脆性断裂时断裂应力c(设 m=E/10=2105MPa) 。 解:由公式 m/c=(a/a0)1/2,a 为 c 对应的裂纹半长度,即a=1
20、.5mm,c=28.2845MPa注:参考,原题可能有误。21.有一大型板件,材料的 0.2=1200MPa,KIc=115MPa*m 1/2,探伤发现 20mm 长的横向穿透裂纹,若在平均轴向拉应力 900MPa 下工作,试计算 KI 及塑性区宽度 R0,并判断该件是否安全?解:由题意知穿透裂纹受到的应力为 =900MPa根据 /0.2 的值,确定裂纹断裂韧度 KIC 是否休要修正因为 /0.2=900/1200=0.750.7,所以裂纹断裂韧度 KIC 需要修正对于无限板的中心穿透裂纹,修正后的 KI 为:=(MPa*m 1/2)塑性区宽度为: =0.004417937(m)= 2.21(
21、mm)比较 K1 与 KIc:因为 K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:KIKIc ,裂纹会失稳扩展 , 所以该件不安全。注:书上原题为:有一大型板件,材料的 R0.2=1200Mpa,22.有一轴件平行轴向工作应力 150MPa,使用中发现横向疲劳脆性正断,断口分析表明有25mm 深度的表面半椭圆疲劳区,根据裂纹 a/c 可以确定 =1 ,测试材料的0.2=720MPa ,试估算材料的断裂韧度 KIC 为多少?解: 因为 /0.2=150/720=0.208Kth 时,da/dN0,疲劳裂纹才开始扩展。因此,Kth 是疲劳裂纹不扩展的 K 临界值,称
22、为疲劳裂纹扩展门槛值。3.试述金属疲劳断裂的特点(1)疲劳是低应力循环延时断裂,机具有寿命的断裂(2)疲劳是脆性断裂(3)疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感4.试述疲劳宏观断口的特征及其形成过程答:典型疲劳断口具有三个形貌不同的区域疲劳源、疲劳区及瞬断区。(1)疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压,故显示光亮平滑,另疲劳源的贝纹线细小。(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。特征是:断口比较光滑并分布有贝纹线。断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。贝纹线是由载荷变
23、动引起的,如机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域。其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为纤维状断口。5.试述疲劳曲线(S-N)及疲劳极限的测试方法升降法测试疲劳极限;取略高于疲劳极限的 5 级应力水平,从最高应力水平测试,当试样通过时,增加一级应力水平,不通过时降低一级应力水平,出现至少 13 个有效试样时求的材料的疲劳极限成组法测试高应力部分;去 4 级较高应力水平,在每级应力水平下测试 5个试样,得到每个应力水平的 N 值,两种结构整理并拟合成 S-N 曲线6试述疲劳图的意义、建立及
24、用途。定义:疲劳图是各种循环疲劳极限的集合图/也是疲劳曲线的另一种表达形式。意义:很多机件或构件是在不对称循环载荷下工作的,因此还需知道材料的不对称循环疲劳极限,以适应这类机件的设计和选材的需要。通常是用工程作图法,由疲劳图求得各种不对称循环的疲劳极限。1、 疲劳图am建立:这种图的纵坐标以 表示,横坐标以 表示。然后,以不同应力比 r 条件下将am表示的疲劳极限 分解为 和 ,并在该坐标系中作 ABC 曲线,即为 疲maxr am劳图。其几何关系为:maxini1()12tana r(用途):我们知道应力比 r,将其代入试中,即可求得 和 ,而后从坐标原点 Ota引直线,令其与横坐标的夹角等
25、于 值,该直线与曲线 ABC 相交的交点 B 便是所求的点,其纵、横坐标之和,即为相应 r 的疲劳极限 , 。rBraBm2、 疲劳图maxin()m建立:这种图的纵坐标以 或 表示,横坐标以 表示。然后将不同应力比 r 下的axminm疲劳极限,分别以 和 表示于上述坐标系中,就形成这种疲劳图。几何关系min()为: axaxin2tn1r(用途):我们只要知道应力比 r,就可代入上试求得 和 ,而后从坐标原点 O 引一tan直线 OH,令其与横坐标的夹角等于 ,该直线与曲线 AHC 相交的交点 H 的纵坐标即为疲劳极限。7.试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法。答:宏观疲劳裂纹是由微观裂纹的形成、长大及连接而成的。疲劳微观裂纹都是由不均匀的局部滑移和显微开裂引起的,主要有表面滑移开裂,第二相、夹夹杂物或其界面开裂;晶界或亚晶界开裂等。阻止疲劳裂纹萌生方法有:细晶强化、固溶强化,降低第二相和夹杂物的脆性,提高相界面强度,控制第二相或夹杂物的数量、形态、大小和分布,使晶界强
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。