ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.03MB ,
资源ID:879057      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-879057.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数值分析题库及答案.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

数值分析题库及答案.doc

1、模 拟 试 卷(一)一、填空题(每小题 3 分,共 30 分)1有 3 个不同节点的高斯求积公式的代数精度是 次的.2设 , ,则 = ., = _.52104A4xA1x3已知 y=f(x)的均差(差商) , ,012, 3f 1235, f, , 那么均差 = .23491,5238,x4x4已知 n=4 时 NewtonCotes 求积公式的系数分别是: 则,152,46,907)()(1)( CC .)(3C5解初始值问题 的改进的 Euler 方法是 阶方法;0(,)yfx6求解线性代数方程组 的高斯塞德尔迭代公式为 , 12350.67.1xx若取 , 则 .(0)1)x(1)7求

2、方程 根的牛顿迭代格式是 .(fx8 是以整数点 为节点的 Lagrange 插值基函数,则01(), ,)n 01, ,nx= .0nkj9解方程组 的简单迭代格式 收敛的充要条件是 .Axb(1)()kkxBg10设 ,则 的三次牛顿插值多项式为 (-1),(0),(),25fffffx,其误差估计式为 .二、综合题(每题 10 分,共 60 分)1求一次数不超过 4 次的多项式 满足: , ,()px(1)5()20p(1)3, .(2)57p()22构造代数精度最高的形式为 的求积公式,并求出1010()()(2xfdAff其代数精度. 3用 Newton 法求方程 在区间 内的根,

3、要求 .2lnx)(810kx4用最小二乘法求形如 的经验公式拟合以下数据:yabix19 25 30 38iy19.0 32.3 49.0 73.35用矩阵的直接三角分解法解方程组.7135 01422x6 试用数值积分法建立求解初值问题 的如下数值求解公式0(,)yf,111(4)3nnnhff其中 .(,),iifxyi三、证明题(10 分)设对任意的 ,函数 的导数 都存在且 ,对于满足()fx()fx0()mfxM的任意 ,迭代格式 均收敛于 的根 .20M1)kkf0*x参考答案一、填空题15; 2. 8, 9 ; 3. ; 4. ; 5. 二; 15646. , (0.02,0.

4、22,0.1543)()()()23112()()()320./7*/kkkkkkxx7. ; 8. ; 9. ; 1()kkkxfjx()1B10. 32(4),1)2/4(1,2)6f二、综合题1差商表:1112215151557572020427215223078 133234()1520()5()7()()254pxxxxxx其他方法:设 233()(1)()(1)()ab令 , ,求出 a 和 b.257p2取 ,令公式准确成立,得:(),fx, , , .01A0123A016A时,公式左右 ; 时,公式左 , 公式右()fx43()fx1524 公式的代数精度 .3此方程在区间

5、内只有一个根 ,而且在区间(2,4)内。设) ,2(sln)(xf则 , ,Newton 法迭代公式为1 21)(xf, )ln/l1 kkkxx ,210k取 ,得 。30146932.s4 , ,21,spanx221195308TA.19.0324.73Ty解方程组 ,其中 , TTACy3041682TA解得: .65043所以 , . .927a0.125b5解 设 4322432413 01012 ulll由矩阵乘法可求出 和ijul 1021432413lll 2043u解下三角方程组 715012432y有 , , , .51y326再解上三角方程组 4635210x得原方程组

6、的解为 , , , .1x326 解 初值问题等价于如下形式 ,1()(,)nxyfydx取 ,有 ,1nx11()(,(nxnyfd利用辛卜森求积公式可得 .1114)3nnnhyf三、证明题证明 将 写成 ,()0fx()xfx由于 ,所以()1f|()|1()|fx所以迭代格式 均收敛于 的根 .1kkxx 0fx*模 拟 试 卷(二)一、填空题(每小题 3 分,共 30 分)1分别用 2.718281 和 2.718282 作数 的近似值,则其有效位数分别有 位和 位 e;2 设 , ,则 = _, = .02138A13x1A2x3对于方程组 , Jacobi 迭代法的迭代矩阵是 =

7、_.405 21x JG4设 ,则差商 =_, =_.)(3xf 3 ,210f 0, 123,4f5已知 , 则条件数 _.01A()CondA6为使两点的数值求积公式 具有最高的代数精确度,则其求101()fxffx积基点应为 =_, =_0x17解初始值问题 近似解的梯形公式是 0(,)yf1ky8求方程 根的弦截法迭代公式是 ()fx9. 计算积分 ,取 4 位有效数字,用梯形公式计算求得的近似值是 , 用辛10.5d卜生公式计算的结果是 10任一非奇异矩阵 的条件数 ,其 一定大于等于 A()CondA()CondA二、综合题(每题 10 分,共 60 分)1 证明方程 在区间 有且

8、只有一个根,若利用二分法求其误差不超过1sinx0,1近似解,问要迭代多少次?41022 已知常微分方程的初值问题: ,1.2,()dyx试用改进的 Euler 方法计算 的近似值,取步长 .1.2y0h3 用矩阵的 分解法解方程组 .TLD12359670x4 用最小二乘法求一个形如 的经验公式,使它与下列数据拟合.1yabxx 1.0 1.4 1.8 2.2 2.6y 0.931 0.473 0.297 0.224 0.1685 设方程组 ,试考察解此方程组的雅可比迭代法及高斯赛德尔迭0.4.182.3xyz代法的收敛性。6 按幂法求矩阵 的按模最大特征值的近似值,取初始向量4123A,迭

9、代两步求得近似值 即可.(0)1,)Tx(2)三、证明题(10 分)已知求 )0(a的迭代公式为:2,10)(210 kxaxkk证明:对一切 , 且序列 是单调递减的,从而迭代过程收敛., 参考答案一、填空题16, 7; 2. 9, ; 3 . ; 4. 1, 0; 5. 9; 6. , ; 1052. 137. ;1(,)(,)2kkkhyfxyfy8. ; 9. 0.4268, 0.4309; 10. , 11 11()k kkxff 1A二、综合题1 解 令 ,则 , ,且()sinfxx(0)1f()sin0f()1cos0fx故 在区间 内仅有一个根 .in,*x利用二分法求它的误

10、差不超过 的近似解,则 412*411|02kkx解此不等式可得 4l03.87nk所以迭代 14 次即可.2、解:102101(,).5,(,).57429,kfxykfxyhk12.01hy3 解 设 311222133597 ldl 利用矩阵乘法可求得, , , , ,1d23d21l315l32l解方程组 得 ,230651y1234,6,yy再解方程组 得 .1122133 064dx 123,2xx4 解 令 ,则 容易得出正规方程组1Yyabx,解得 .596.97117.835022.053,0265ab故所求经验公式为 .yx5 解 (1) 由于 30.4()80.96.25

11、.Jf,()0982560Jf(2)1.0Jf 所以 在 内有根 且 ,故利用雅可比迭代法不收敛.(,1)i|i(2) 由于 2.4()0.08(.30.128).Gf 所以 ,故利用高斯赛德尔迭代法收敛.()8326 解 因为 ,故 ,(0)1,Tx(0)1x且 , .(1)()4yA(1)()ma4y从而得, ,(1)()(1)/,4Txy(2)(1)9,4TAx.(2)(2)9ma三、证明题 证明: 由于 1(),0,122kkaxkx故对一切 , ,又k12()()kkax所以 ,即序列 是单调递减有下界,从而迭代过程收敛.1kxx模 拟 试 卷(三)一、填空题(每小题 3 分,共 3

12、0 分)1设 是真值 的近似值,则 有 位有效位数,相对误差限为 2.4015a2.4019xa;2 若用二分法求方程 在区间1,2内的根,要求精确到第 3 位小数,则需要对()f分 次。3有 n 个节点的高斯求积公式的代数精度为 次.4设 ,要使迭代格式 局部收敛到 ,则 的取值2()(5)xa1()kkx*5xa范围是 5设线性方程组 有唯一解,在不考虑系数矩阵扰动的情况下,若方程组右端项的A=b扰动相对误差 ,就一定能保证解的相对误差 ; x6给定线性方程组 ,则解此线性方程组的 Jacobi 迭代公式是 129854x,Gauss-Seidel 迭代公式是 7插值型求积公式 的求积系数

13、之和是 0()()nbkaAfxfdx8数值求解初值问题的龙格-库塔公式的局部截断误差是 9. 已知函数 ,用此函数表作牛顿插值多(.4)1, (.5)078 ,(.6)097fff项式,那么插值多项式 的系数是 2x10 设 ,为使 可分解为 ,其中 是对角线元素为正的下三角201aAA=TL矩阵,则 的取值范围是 。a二、综合题(每题 10 分,共 60 分)1用 Newton 法求方程 在区间 内的根, 要求 .ln2x)(810kx2设有方程组 ,其中 , ,已知它有解 ,b102A123b230如果右端有小扰动 ,试估计由此引起的解的相对误差。6103试用 Simpson 公式计算积

14、分 的近似值, 并估计截断误差.dxe2/4设函数 在区间0,3上具有四阶连续导数,试用埃尔米特插值法求一个次数不高于()fx3 的多项式 ,使其满足 ,并写出误差估计3P3333(0),(1),(),(2)1PP式。5 ,给出用古典 Jacobi 方法求 的特征值的第一次迭代运算。 210AA6用梯形方法解初值问题 , 证明其近似解为 ,并证明当0()1y2nnhy时,它收敛于原初值问题的准确解 。 0hxye三、证明题(10 分)若 有 个不同的实根,证明 .1()niifxa10,21()knji nkxfa参考答案一、填空题1. 3, ; 2. 10; 3. ; 4. ; -30.512-1n50a5. ; ()condA6. , 12()2()18/9, 0145kkx 12()()218/9, 0,45kkx7. ; 8. ; 9. 2.4; 10 . ba()Oh3a

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。