温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-8801027.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(数列中an及Sn的关系(共15页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上课题浅谈数列中an与Sn的递推公式的应用对于任意一个数列,当定义数列的前n项和通常用Sn表示时,记作Sna1a2an,此时通项公式an 而对于不同的题目中的an与Sn的递推关系,在解题时又应该从哪些方向去灵活应用anSnSn1(n2)去解决不同类型的问题呢? 我们将从下面三个角度去探索在各类考试中出现的an与Sn相关的问题:归纳起来常见的角度有:角度一:直观运用已知的Sn,求an;角度二:客观运用anSnSn1(n2),求与an,Sn有关的结论;角度三:an与Sn的延伸应用角度一:直观运用已知的Sn,求an方法:已知Sn求an的三个步骤(此时Sn为关于n的代数式):(1)先利用a1S1求出a1;(2)用n1替换Sn中的n得到一个新的关系,利用anSnSn1(n2)便可求出当n2时an的表达式;(3)对n1时的结果进行检验,看是否符合n2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。