ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:361.50KB ,
资源ID:893741      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-893741.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高一数学必修一知识点总结.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高一数学必修一知识点总结.doc

1、第 1 页 共 7 页高 一 数 学 必 修 1 各 章 知 识 点 总 结第一章 集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由 HAPPY 的字母组成的集合H,A,P,Y(3) 元素的无序性: 如:a,b,c和a,c,b 是表示同一个集合3.集合的表示: 如:我校的篮球队员 ,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+

2、整数集 Z 有理数集 Q 实数集 R1) 列举法:a,b,c2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR| x-32 ,x| x-323) 语言描述法:例: 不是直角三角形的三角形4) Venn 图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:x|x 2=5二、集合间的基本关系1.“包含”关系子集注意: 有两种可能(1)A 是 B 的一部分, ;(2)A 与 BB是同一集合。反之: 集合 A 不包含于集合 B,或集合 B 不包含集合 A,记作A B 或 BA2 “相等”关系:A

3、=B (55,且 55,则 5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等 ”即: 任何一个集合是它本身的子集。A A真子集:如果 AB,且 A B 那就说集合 A 是集合 B 的真子集,记作 A B(或 B A)如果 AB, BC ,那么 AC 如果 AB 同时 BA 那么 A=B3. 不含任何元素的集合叫做空集,记为 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 有 n 个元素的集合,含有 2n 个子集,2 n-1 个真子集第 2 页 共 7 页三、集合的运算运算类型交 集 并 集 补 集定 义由所有属于 A 且属于 B 的元素所组成的集合,叫

4、做 A,B 的交集记作A B(读作A交 B) ,即A B=x|x A,且 x B 由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做A,B 的并集记作:A B(读作A 并B) ,即 A B =x|xA,或 x B)设 S 是一个集合,A是 S 的一个子集,由S 中所有不属于 A 的元素组成的集合,叫做 S 中子集 A 的补集(或余集)记作 ,即CSCSA= ,|x且韦恩图示A B图1A B图2性 质A A=A A =A B=B AA B AA B BA A=AA =AA B=B AA B A B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A

5、(CuA)=UA (CuA)= 二、函数的有关概念1函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:AB 为从集合 A 到集合 B 的一个函数记作: y=f(x),xA其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域2值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间SASA第 3 页 共 7 页

6、(3)区间的数轴表示4映射一般地,设 A、B 是两个非空的集合,如果按某一个确定的对应法则 f,使对于集合 A 中的任意一个元素 x,在集合 B 中都有唯一确定的元素 y 与之对应,那么就称对应 f:A B 为从集合 A 到集合 B 的一个映射。记作“f(对应关系):A (原象)B(象) ”对于映射 f:AB 来说,则应满足:(1)集合 A 中的每一个元素,在集合 B 中都有象,并且象是唯一的;(2)集合 A 中不同的元素,在集合 B 中对应的象可以是同一个;(3)不要求集合 B 中的每一个元素在集合 A 中都有原象。5.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部

7、分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集二函数的性质1.函数的单调性(局部性质)(1)增函数设函数 y=f(x)的定义域为 I,如果对于定义域 I 内的某个区间D 内的任意两个自变量 x1,x 2,当 x11,且 *nN 负数没有偶次方根;0 的任何次方根都是 0,记作 。0当 是奇数时, ,当 是偶数时,a)0(|an2分数指数幂正数的分数指数幂的意义,规定:,)1,(*nNmanm ,01*n 0 的正分数指数幂等于 0,0 的负分数指数幂没有意义3实数指数幂的运算性质(1) ra sr;),(Ra(2)rsr)(;,0sr(3)srb),(a(二

8、)指数函数及其性质1、指数函数的概念:一般地,函数 叫做)1,0(ayx且第 5 页 共 7 页指数函数,其中 x 是自变量,函数的定义域为 R注意:指数函数的底数的取值范围,底数不能是负数、零和 12、指数函数的图象和性质a1 01 0a1 32.521.510.5-0.5-1-1.5-2-2.5-1 1 2 3 4 5 6 7 832.521.510.5-0.5-1-1.5-2-2.5-1 1 2 3 4 5 6 7 8定义域 x0 定义域 x0值域为 R 值域为 R在 R 上递增 在 R 上递减函数图象都过定点(1,0)函数图象都过定点(1,0)第 7 页 共 7 页(三)幂函数1、幂函

9、数定义:一般地,形如 的函数称为幂函xy)(Ra数,其中 为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1) ;(2) 时,幂函数的图象通过原点,并且在区间 上 ),0是增函数特别地,当 时,幂函数的图象下凸;当1时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数在第0),0(一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近xy轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴yxx正半轴第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数 ,把使)(Dxfy成立的实数 叫做函数 的零点。0)(xfx2、函数零点的意

10、义:函数 的零点就是方程 实)0)(xf数根,亦即函数 的图象与 轴交点的横坐标。)(fy即:方程 有实数根 函数 的图象与 轴有交)(f)(fy点 函数 有零点x3、函数零点的求法:(代数法)求方程 的实数根; 1 0)(f(几何法)对于不能用求根公式的方程,可以将它与函数 2的图象联系起来,并利用函数的性质找出零点)(xfy4、二次函数的零点:二次函数 )(2acbx(1),方程 有两不等实根,二次函数的0图象与 轴有两个交点,二次函数有两个零点x(2),方程 有两相等实根,二次函数的2图象与 轴有一个交点,二次函数有一个二重零点或二阶零点(3),方程 无实根,二次函数的图象与cbxa轴无交点,二次函数无零点x

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。