1、专升本高等数学复习资料一、函数、极限和连续1函数 的定义域是( ))(xfyA变量 x 的取值范围 B使函数 的表达式有意义的变量 x 的取值范围 )(xfyC全体实数 D以上三种情况都不是 2以下说法不正确的是( )A两个奇函数之和为奇函数 B两个奇函数之积为偶函数C奇函数与偶函数之积为偶函数 D两个偶函数之和为偶函数 3两函数相同则( )A两函数表达式相同 B两函数定义域相同 C两函数表达式相同且定义域相同 D两函数值域相同4函数 的定义域为( )2yxA B(2,),4C D )5函数 的奇偶性为( )3()sinfxxA奇函数 B偶函数C非奇非偶 D无法判断6设 则 等于( ),12)
2、(xffA B C D12xx217 分段函数是( )A 几个函数 B可导函数 C连续函数 D几个分析式和起来表示的一个函数8下列函数中为偶函数的是( )A B C Dxey)ln(xyxycos3xyln9以下各对函数是相同函数的有( )A Bgf()与 gf cos)(in1)(2与C D1)(xf与 2xxxf与10下列函数中为奇函数的是( )A B C D3cos(xyxysin2xey23y11设函数 的定义域是0,1,则 的定义域是( )f )1fA B C 0,1 D 1,21,20,112函数 的定义域是( )202)(xxfA B C D (0,2),(,(,(13若 ( )
3、1,231fxxf 则A B3 C D114若 在 内是偶函数,则 在 内是( )(f)(f,A奇函数 B偶函数 C非奇非偶函数 D 0xf15设 为定义在 内的任意不恒等于零的函数,则 必是( )(xf)( )(fFA奇函数 B偶函数 C非奇非偶函数 D x16 设 则 等于 ( )42,01,)(2xxf )2(fA B C D无意义128017函数 的图形( )xysinA关于 轴对称 B关于 轴对称 C关于原点对称 D关于直线 对称ooy xy18下列函数中,图形关于 轴对称的有( )A Bxycs13xC D2e2ey19.函数 与其反函数 的图形对称于直线( )(xf)1xfA B
4、 C D0y0xyxy20. 曲线 在同一直角坐标系中,它们的图形( )1,(logaxaax与A关于 轴对称 B关于 轴对称 C关于直线 轴对称 D关于原点对称yxy21对于极限 ,下列说法正确的是( ))(lim0xfA若极限 存在,则此极限是唯一的 xB若极限 存在,则此极限并不唯一 )(li0f2C极限 一定存在 )(lim0xfD以上三种情况都不正确 22若极限 存在,下列说法正确的是( )A)(li0fxA左极限 不存在 B右极限 不存在)(lim0xfxC左极限 和右极限 存在,但不相等)(lim0fx )(li0fxD A23极限 的值是( )ln1ixeA1 B C0 D e
5、24极限 的值是( )lcotimnxA 0 B 1 C D 125已知 ,则( )2sil0xbaxA B C D, 1,a1,2ba0,2ba26设 ,则数列极限 是balimnnA B C1 D27极限 的结果是xx1032liA0 B C D不存在528 为( ) xlim2snA2 B C1 D无穷大量29 为正整数)等于( )nxx,(sil0A B C Dmnm)1( mn)1(30已知 ,则( )1tanli230xbxA B C D, 0, 0,6ba1,ba31极限 ( )xxcoslimA等于 1 B等于 0 C为无穷大 D不存在332设函数 则 ( )010sin)(x
6、exfx lim0xfA1 B0 C D不存在33下列计算结果正确的是( )A B ex10)4lim410)(liexC D 410)(lixx 410)(limxx34极限 等于( )xxtan0liA 1 B C 0 D2135极限 的结果是 xxsin1ilm0A B1 C0 D不存在36 为 ( ) sinlkxxAk B C1 D无穷大量37极限 =( )xsilm2A0 B1 C D1238当 时,函数 的极限是( )xx)A B C 1 Dee139设函数 ,则 0cos0in)(xxf )(lim0xfA1 B0 C D不存在140已知 的值是( )axx则,56lim21A
7、7 B C 2 D3741设 ,且 存在,则 的值是( )02tan)(xxf )(limxfaA1 B C 2 D1242无穷小量就是( )A比任何数都小的数 B零 C以零为极限的函数 D以上三种情况都不是43当 时, 与 比较是( )0x)sin(3x4A高阶无穷小 B等价无穷小 C同阶无穷小 ,但不是等价无穷小 D低阶无穷小44当 时,与 等价的无穷小是( )0xxA B C Dsin)1l()1(2x)1(2x45当 时, 与 比较是( )0x3taxA高阶无穷小 B等价无穷小C同阶无穷小 ,但不是等价无穷小 D低阶无穷小46设 则当 时( ),1)(,1(2)xgxf 1A 是比 高
8、阶的无穷小 B 是比 低阶的无穷小f )(f)(xgC 与 为同阶的无穷小 D 与 为等价无穷小)(xg47当 时, 是比 高阶的无穷小,则( )01)(axfA B C 为任一实常数 D 1a01a48当 时, 与 比较是( )x2tnA高阶无穷小 B等价无穷小 C同阶无穷小 ,但不是等价无穷小 D低阶无穷小49 “当 , 为无穷小”是“ ”的( )0Axf)( Axf)(lim0A必要条件,但非充分条件 B充分条件,但非必要条件C充分且必要条件 D既不是充分也不是必要条件50 下列变量中是无穷小量的有( )A B)1lnim0x)1(2li1xxC Dxcosixsincolim051设
9、( ) 时则 当,23)(fxA 与 是等价无穷小量 B 与 是同阶但非等价无穷小量xfC 是比 较高阶的无穷小量 D 是比 较低阶的无穷小量)(xf )(52 当 时,下列函数为无穷小的是( )0A B C Dx1sinxe1xlnxsin153 当 时,与 等价的无穷小量是 ( )02iA B C D)1ln(xxtanxcos11xe54 函数 当 时 ( ),sifyf5A有界变量 B无界变量 C无穷小量 D无穷大量55 当 时,下列变量是无穷小量的有 ( )0xA B C D3xcosxlnxe56 当 时,函数 是( )0xyse1inA不存在极限的 B存在极限的 C无穷小量 D无
10、意义的量57若 时, 与 都趋于零,且为同阶无穷小,则( )0)(xfgA B)(lim0x )(lim0xgfC D 不存在)1,0)(li0cgfx )(li0fx58当 时,将下列函数与 进行比较,与 是等价无穷小的为( )xA B C D3tan2cotsx1sin259函数 在点 有定义是 在点 连续的( ))(xf0)(xf0A充分条件 B必要条件 C充要条件 D即非充分又非必要条件60若点 为函数的间断点,则下列说法不正确的是( )0A若极限 存在,但 在 处无定义,或者虽然 在 处有定义,但A)(lim0xf)(xf0)(xf0,则 称为 的可去间断点B若极限 与极限 都存在但
11、不相等,则 称为 的跳跃间断点)(li0xfx )(li0xfx 0x)(fC跳跃间断点与可去间断点合称为第二类的间断点D跳跃间断点与可去间断点合称为第一类的间断点61下列函数中,在其定义域内连续的为( ) A Bxxfsinl)0sin)(xexfxC D01)(xf 01)(xf62下列函数在其定义域内连续的有( ) A Bxf)cosin)(xxf6C D010)(xxf 01)(xxf63设函数则 在点 处 ( )02arctn)(xxf)(xfA连续 B左连续 C右连续 D既非左连续 ,也非右连续64下列函数在 处不连续的有( )0A B)(2xexfx 01sin)(2xxfC D
12、0)(2f )l()2f65设函数 , 则在点 ( )12)(xxf 1xfx处 函 数A不连续 B连续但不可导 C可导,但导数不连续 D可导,且导数连续66设分段函数 ,则 在 点( )0)(2xxf )(xf0A不连续 B连续且可导 C不可导 D极限不存在67设函数 ,当自变量 由 变到 =( )(fy0 y相 应 函 数 的 改 变 量时 ,A B C D0xfxf)( )(00xffxf(068已知函数 ,则函数 ( )12)(xef xfA当 时,极限不存在 B当 时,极限存在0x 0C在 处连续 D在 处可导69函数 的连续区间是( ) )1lnyA B C D,2,2(,),1(
13、),170设 ,则它的连续区间是( )nxxf13lim)(A B, 处为 正 整 数 )(1nxC D)0()(处及071设函数7, 则函数在 处( )031)(xxf 0xA不连续 B连续不可导 C连续有一阶导数 D连续有二阶导数72设函数 ,则 在点 处 ( )00xy)(xf0A连续 B极限存在 C左右极限存在但极限不存在 D左右极限不存在73设 ,则 是 的( )1cot)(2arxf )(xfA可去间断点 B跳跃间断点 C无穷间断点 D振荡间断点74函数 的间断点是( )2xyezA B是曲线 上的任意点)1,),0(yeC D曲线 上的任意点( 2x75设 ,则曲线( )2)4x
14、yA只有水平渐近线 B只有垂直渐近线y 0xC既有水平渐近线 ,又有垂直渐近线 D无水平,垂直渐近线0x76当 时, ( )0xxy1sinA有且仅有水平渐近线 B有且仅有铅直渐近线C既有水平渐近线,也有铅直渐近线 D既无水平渐近线,也无铅直渐近线二、一元函数微分学77设函数 在点 处可导,则下列选项中不正确的是( ))(xf0A Byfx0lim xffxf)(lim)( 000C D00)(li)(0xffxhffxfh)(21(li)( 00078若 ,则 ( )ecosyyA0 B1 C D1279设 ,则 ( )xgxfin)(,)( gfA B C Desinecosxecosxe
15、sin880设函数 在点 处可导,且 ,则 等于( )(xf02)(0xf hxfxfh)21(lim00A B2 C1 D181设 在 处可导,则 =( )(xfaxaffx()(li0A B C0 D )f 2(af82设 在 处可导,且 ,则 ( ))(xf22(hh)lim0A4 B0 C2 D3 83设函数 ,则 等于( ))()1()xf )(fA0 B C1 D3 684设 在 处可导,且 ,则 ( ))(xf 1)0(f hfh)(li0A1 B0 C2 D385设函数 在 处可导,则 ( ) )(f0limhxff) -(0A与 ,h 都有关 B仅与 有关,而与 h 无关0x
16、 0C仅与 h 有关,而与 无关 D与 ,h 都无关0x86设 在 处可导,且 ,则 ( ))(xf121)(1(lim0hffh )(fA B C D 22487设 ( )(fexfx则A B1 C D288导数 等于( ) logaA B C Dxnaxlnxalog1x189若 则 =( ),()2(24910y )29(yA30 B29! C0 D30201090设 =( ),)(,)(xfefxf 则存 在且A B)()( ffx )()(xfeffxC D )()( xfefeffxf )(f91设 ( )0),121( fx则A100 B100! C D! 192若 ( ),yx
17、则9A B C不可导 D1xxln )ln1(xx93 ( )处 的 导 数 是在 点 2)(fA1 B0 C D不存在194设 ( ),)2(yxy则A B)1( 2ln)(xC Dln2xx )1(95设函数 在区间 上连续,且 则 ( )(fba,0)bfaA 在 内必有最大值或最小值x,B 在 内存在唯一的)(f )(,f使C 在 内至少存在一个 x,ba0使D 在 内存在唯一的)(f )(,f使96设 则 ( ),)(xgydyA B C D)(2f)(12xgf)(21xgfy )(2xgfy97若函数 在区间 内可导,则下列选项中不正确的是( ) xba,A若在 内 ,则 在 内单调增加 ),(0(f)(xfba,B若在 内 ,则 在 内单调减少axC若在 内 ,则 在 内单调增加 )b,(f)(xfa,D 在区间 内每一点处的导数都存在xfa,98若 在点 处导数存在,则函数曲线在点 处的切线的斜率为( ) )(y0 )(,0xfA B C0 D10xf)(xf99设函数 为可导函数,其曲线的切线方程的斜率为 ,法线方程的斜率为 ,则 与 的关系为( )1k2k12A B C D21k121k21 021100设 为函数 在区间 上的一个极小值点,则对于区间 上的任何点 ,下列说法正确的是( )0x)(fba, ba,xA B )(0f)(0xff
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。