ImageVerifierCode 换一换
格式:DOC , 页数:79 ,大小:2.08MB ,
资源ID:917843      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-917843.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新人教版2017年春九年级数学下册全册教案.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

新人教版2017年春九年级数学下册全册教案.doc

1、义务教育课程标准人教版数学教案九年级 下册2017 年春- 1 -第二十六章 反比例函数2611 反比例函数的意义(1 课时)一、教学目标1使学生理解并掌握反比例函数的概念2能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式3能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式难点:理解反比例函数的概念三、教学过程(一) 、创设情境、导入新课问题:电流 I、电阻 R、电压 U 之间满足关系式 U=IR,当 U220V 时,(1)你能用含有 R 的代数式表示 I 吗?(2)利用写出的关系式完成下表:R/ 2

2、0 40 60 80 100I/A当 R 越来越大时,I 怎样变化?当 R 越来越小呢?(3)变量 I 是 R 的函数吗?为什么?概念:如果两个变量 x,y 之间的关系可以表示成 的形)0(kxky为 常 数 ,式,那么 y 是 x 的反比例函数,反比例函数的自变量 x 不能为零。(二) 、联系生活、丰富联想1.一个矩形的面积为 20 ,相邻的两条边长分别为 x cm 和 y cm。那么2cm- 2 -变量 y 是变量 x 的函数吗?为什么?2.某村有耕地 346.2 公顷,人数数量 n 逐年发生变化,那么该村人均占有耕地面积 m(公顷/人)是全村人口数 n 的函数吗?为什么?(三) 、举例应

3、用、创新提高:例 1 (补充)下列等式中,哪些是反比例函数?(1) (2) (3)xy21 (4) (5)3xyxy22xy31xy例 2 (补充)当 m 取什么值时,函数 是反比例函数?3)(m(四) 、随堂练习1苹果每千克 x 元,花 10 元钱可买 y 千克的苹果,则 y 与 x 之间的函数关 系式为 2若函数 是反比例函数,则 m 的取值是 28)3(mxy(五) 、小结:谈谈你的收获(六) 、布置作业(七) 、板书设计2611 反比例函数的意义1、反比例函数的概念 例:2、会用待定系数法求解析式 练习:四、教学反思:- 3 -2612 反比例函数的图象和性质(1)教学目标1、体会并了

4、解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。重点与难点:重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。难点:探索并掌握反比例函数的主要性质。教学过程:一、课堂引入提问: 1一次函数 ykxb(k、b 是常数,k0)的图象是什么?其性质有哪些?正比例函数 ykx(k0)呢?2画函数图象的方法是什么?其一般步骤有哪些?应注意什么?二、探索新知:探索活动 1 反比例函数 与 的图象xy6探索活动 2 反比例函数 与 的图象有什么共同特征? 三、应用举例:例 1 (补充)已知反比例函数 的图象在第二、四象限,求 m

5、32)1(mxy值,并指出在每个象限内 y 随 x 的变化情况?例 2 (补充)如图,过反比例函数(x 0)的图象上任意两点 A、B 分别作 x 轴的y1垂线,垂足分别为 C、D,连接 OA、OB,设AOC 和- 4 -BOD 的面积分别是 S1、S 2,比较它们的大小,可得( )(A)S 1S 2 (B)S 1S 2 (C)S 1S 2 (D)大小关系不能确定四、随堂练习1已知反比例函数 ,分别根据下列条件求出字母 k 的取值范围xky3(1)函数图象位于第一、三象限(2)在第二象限内,y 随 x 的增大而增大2反比例函数 ,当 x2 时,y ;当 x2 时;y y的取值范围是 ;当 x2

6、时;y 的取值范围是 3.已知反比例函数 ya()6,当 0时, y 随 x 的增大而增大,求函数关系式五、小结:谈谈你的收获六、布置作业七、板书设计2612 反比例函数的图象和性质(1)1、反比例函数的图象 例:2、反比例函数的主要性质 练习:教学反思:- 5 -2612 反比例函数的图象和性质(2)一、教学目标1使学生进一步理解和掌握反比例函数及其图象与性质2能灵活运用函数图象和性质解决一些较综合的问题3深刻领会解析式与图象之间联系,体会数形结合及转化思想方法二、重点与难点重点:理解并掌握反比例函数图象和性质,并能利用它们解决一些综合问题难点:学会从图象上分析、解决问题,理解反比例函数的性

7、质。三、教学过程(一)复习引入:1什么是反比例函数?2反比例函数的图象是什么?有什么性质?(二)应用举例:例 1 (补充)若点 A(2,a) 、B(1,b) 、C(3,c)在反比例函数(k 0)图象上,则 a、b、c 的大小关系怎样?xy例 2 (补充)如图,一次函数 ykxb 的图象与反比例函数 的图xmy象交于 A(2,1) 、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的 x 的取值范围例 3:已知变量 y 与 x 成反比例,且当 x=2 时 y=9,写出 y 与 x 之间的函数解析式和自变量的取值范围。 - 6 -(三)随堂练习:

8、1.当质量一定时,二氧化碳的体积 V 与密度 p 成反比例。且 V=5m3时,p=198kgm 3(1)求 p 与 V 的函数关系式,并指出自变量的取值范围。(2)求 V=9m3时,二氧化碳的密度。2、已知反比例函数 y=k/x(k0)的图像经过点(4,3) ,求当 x=6 时, y 的值。(四)小结:谈谈你的收获(五)布置作业(六)板书设计2612 反比例函数的图象和性质(2)1、反比例函数及其图象与性质 例:2、综合的问题 练习:四、教学反思:- 7 -26.2 实际问题与反比例函数(第一、二课时)一、教学目标1、能灵活运用反比例函数的知识解决实际问题。2、经历“实际问题建立模型拓展应用”

9、的过程发展学生分析问题,解决问题的能力。3、提高学生的观察、分析的能力二、重点与难点重点:运用反比例函数的意义和性质解决实际问题。难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。三、教学过程(一)提问引入、创设情景活动一:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。(1) 当人和木板对湿地的压力一定时,随着木板面积 S(m 2)的变化,人和木板对地面的压强 P(Pa)将如何变化?(2) 如果人和木板反湿地的压力合计 600N,那么 P

10、是 S 的反比例函数吗?为什么?(3) 如果人和木板对湿地的压力合计为 600N,那么当木板面积为 0.2m2时,压强是多少?活动二:某煤气公司要在地下修建一个容积为 104m3的圆柱形煤气储存室。- 8 -(1)储存室的底面积 S(单位:m 2)与其深度 d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积 S 定为 500 m2,施工队施工时应该向下掘进多深?(3)当施工队施工的计划掘进到地下 15m 时,碰到了岩石,为了节约资金,公司临时改设计,把储存室的深改为 15m,相应的,储存室的底面积改为多少才能满足需要。 (保留两位小数)?(二)应用举例、巩固提高例 1 近视眼镜的度

11、数 y(度)与焦距 x(m)成反比例,已知 400度近视眼镜镜片的焦距为 0.25m(1)试求眼镜度数 y 与镜片焦距 x 之间的函数关系式;(2)求 1 000 度近视眼镜镜片的焦距例 2 如图所示是某一蓄水池每小时的排水量V(m 3/h)与排完水池中的水所用的时间 t(h)之间的函数关系图象(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要 6h 排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是 5 000m3,那么水池中的水将要多少小时排完?(三)课堂练习:1A、B 两城市相距 720 千米,一列火车从 A 城去 B 城(1)火车的速度 v(千米/时)和行驶的时间 t(时)之间的函数关系

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。