ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:308.26KB ,
资源ID:919388      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-919388.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(整式的乘法与因式分解知识点及例题.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

整式的乘法与因式分解知识点及例题.doc

1、1整式乘除与因式分解一知识点 (重点) 1幂的运算性质:amana mn (m、n 为正整数)同底数幂相乘,底数不变,指数相加例:(2a) 2(3a 2)32 amn (m、n 为正整数)幂的乘方,底数不变,指数相乘例: (a 5)53nb(n 为正整数)积的乘方等于各因式乘方的积例:(a 2b)3 练习: (1) (2) (3)yx235 )4(32b ab2(4) (5) (6)z2xy 253)(1c4 nma amn (a0,m、n 都是正整数,且 mn)同底数幂相除,底数不变,指数相减例:(1)x 8x2 (2)a 4a (3) (ab) 5(ab) 2(4) (-a) 7(-a)

2、5 (5 ) (-b) 5(-b)25零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于 l例:若 成立,则 满足什么条件?1)32(bba,6负指数幂的概念:a p (a0,p 是正整数)任何一个不等于零的数的p(p 是正整数)指数幂,等于这个数的 p 指数幂的倒数也可表示为:pnm(m0,n0,p 为正整数)7单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例:(1) (2)231abc 423)()1(nm8单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,

3、再把所得的积相加2例:(1) (2))35(22baabab21)3(2(3) (4))-nmn xyzzyx39多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加例:(1) (2) (3))6.0(x)( )(yx2)nm练习:1计算 2x 3(2xy)( xy) 3 的结果是 2(310 8)(410 4) 123若 n 为正整数,且 x 2n3,则(3x 3n) 2 的值为 4如果(a nbab m) 3a 9b 15,那么 mn 的值是 5a 2(2a 3a) 6(4x 26x8) ( x 2) 172n(13mn 2) 8

4、若 k(2k5) 2k(1k)32,则 k9(3x 2)(2x3y)(2x 5y)3y(4x5y) 10在(ax 2bx3)(x 2 x8)的结果中不含 x 3 和 x 项,则 a ,b 111一个长方体的长为(a4)cm,宽为(a3)cm,高为(a 5)cm,则它的表面积为 ,体积为 。12一个长方形的长是 10cm,宽比长少 6cm,则它的面积是 ,若将长方形的长和都扩大了 2cm,则面积增大了 。10单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式例:(1)28x 4y27x3y(2)-5a 5b3c15a4

5、b(3) (2x 2y) 3(-7xy 2)14x 4y311多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加例:练习:1计算:(1) ; (2) ;32471yxz232yxyx(3) (4)6ba323nnxyxyyx6)3()2 )5()105()2323 abba3(5) 3910242计算:(1) ; (2)332316xyyx 3232515xyxy(3)222145 nnn baba3计算:(1) ; (2) 34564yxyxy 23561baba4.若 (ax3my12)(3x3y2n)=4x6y8 , 则 a = , m =

6、,= ;易错点:在幂的运算中,由于法则掌握不准出现错误;有关多项式的乘法计算出现错误;误用同底数幂的除法法则;用单项式除以单项式法则或多项式除以单项式法则出错;乘除混合运算顺序出错。12乘法公式:平方差公式:(ab) (a b)a 2b 2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差完全平方公式:(ab) 2a 22ab b 2(ab) 2a 22ab b 2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的 2 倍例 1: (1)(7+6x)(76x); (2)(3y x)(x3y); (3)(m2n)(m2n)例 2: (1) (x+

7、6) 2 (2) (y-5)2 (3) (-2x+5)2 练习:41、 =_。 _。4352a 322323()()()xyxy2、 (_)24386bab3、 ; (_)2_9(_)xyx235(7)xx4、已知 ,那么 =_; =_。1531215、若 是一个完全平方式,那么 m 的值是_。2296xmy6、多项式 的公因式是_。2,1,3x7、因式分解: _。2783x8、因式分解: _。2414nm9、计算: _。80.13.010、 ,则 =_Ayxyx)(2易错点:错误的运用平方差公式和完全平方公式。13因式分解(难点)因式分解的定义把一个多项式化成几个整式的乘积的形式,这种变形叫

8、做把这个多项式因式分解 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形; (3)因式分解必须分解到每个因式都不能分解为止弄清因式分解与整式乘法的内在的关系因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式二、熟练掌握因式分解的常用方法1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因

9、式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项(4)注意点:提取公因式后各因式应该是最简形式,即分解到“底” ;如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的5例:(1) (2)32381abc35247xy2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:平方差公式: a2b 2 (ab) (a b)完全平方公式:a 22ab b 2(a b) 2a22abb 2(a b) 2例:(1) (2)20.5bc 29()6()1ba(3) (4)4222ax

10、yx22()1()36xyyz练习:1、若 是完全平方式,则 的值等于_。 2、 则 =_ =_16)3(2xmx m2)(nxmxn3、 与 的公因式是 4、若 = ,则 m=_,n=_。y nyx)(4y5、在多项式 中,可以用平方差公式分解因式的42422 9, tsxban有_ ,其结果是 _。6、若 是完全平方式,则 m=_。16)3(2xmx7、 8、已知 则_)(2_x ,0125042xx ._26x9、若 是完全平方式 M=_。10、 , 5)(162Mba 22)3(_62)3(9x11、若 是完全平方式,则 k=_。12、若 的值为 0,则 的值是_ 。22ykx 42x

11、512x13、若 则 =_。14、若 则 _。)15(152xaa6,2y15、方程 ,的解是_。042x易错点:用提公因式法分解因式时易出现漏项,丢系数或 符号错误;6分解因式不彻底。中考考点解读:整式的乘除是初中数学的基础,是中考的一个重点内容.其考点主要涉及以下几个方面:考点 1、幂的有关运算例 1 (2009 年湘西)在下列运算中,计算正确的是( )(A) 326a (B) 235()a (C) 84(D ) 24b 分析:幂的运算包括同底数幂的乘法运算、幂的乘方、积的乘方和同底数幂的除法运算.幂的运算是整式乘除运算的基础,准确解决幂的有关运算的关键是熟练理解各种运算的法则.解:根据同

12、底数幂的乘法运算法则知 ,所以(A)错;根据幂的乘方运算法则知5233aa,所以(B )错;根据同底数幂的除法法则知 ,所以(C)错;故选(D) .632)(aa 6288a例 2.(2009 年齐齐哈尔)已知 , ,则 _102m3n3210mn分析:本题主要考查幂的运算性质的灵活应用,可先逆用同底数幂的乘法法则 ,将指数相加化为幂相mn乘的形式, 再逆用幂的乘方的法则 ,将指数相乘转化为幂的乘方的形式,然后代入求值即可.()mna解: .3210mn32323210107n( )考点 2、整式的乘法运算例 3 (2009 年贺州)计算: 3()4a = 分析:本题主要考查单项式与多项式的乘

13、法运算 .计算时,按照法则将其转化为单项式与单项式的乘法运算,注意符号的变化.解: .)14()23a1)2(42(3aa24考点 3、乘法公式例 4. (2009 年山西省)计算: 2xx分析:运用多项式的乘法法则以及乘法公式进行运算,然后合并同类项.解: 231x= 2269()= = .269x7例 5. (2009 年宁夏)已知: , ,化简 的结果是 32ab1()2ab分析:本题主要考查多项式与多项式的乘法运算 .首先按照法则进行计算,然后灵活变形,使其出现( )与 ,ab7以便求值.解: = = = .(2)ab42ba4)(ba2431考点 4、利用整式运算求代数式的值例 6

14、(2009 年长沙)先化简,再求值: 2()()a,其中 13b, 分析:本题是一道综合计算题 ,主要在于乘法公式的应用.解: 2()()abab22当 3a, 1b时, 13ab2.考点 5、整式的除法运算例 7. (2009 年厦门)计算:(2xy)(2xy )y (y6x )2x 分析:本题的一道综合计算题 ,首先要先算中括号内的,注意乘法公式的使用,然后再进行整式的除法运算.解:(2xy)( 2xy )y (y6x)2x(4x 2y 2y 26xy)2x (4x 26xy)2x 2x3y. 考点 6、定义新运算例 8.(2009 年定西)在实数范围内定义运算“ ”,其法则为: 2ab,

15、求方程(4 3) 24x的解分析:本题求解的关键是读懂新的运算法则 ,观察已知的等式 2可知,在本题中“ ”定义的是平方差运算,即用“ ”前边的数的平方减去 “ ”后边的数的平方.解: 2ab , 22(43)(3)7xxx 274x 5x 5考点 7、乘法公式例 3(1)(2009 年白银市) 当 31xy、 时,代数式 2()xy的值是 (2)(2009 年十堰市) 已知:a+b=3,ab=2,求 a2+b2 的值.解析:问题(1)主要是对乘法的平方差公式的考查.原式=x 2- y 2 +y 2= x 2 = 3 2=9.问题(2)考查了完全平方公式的变形应用, 22)(bab, 5)(2

16、 ab.说明:乘法公式应用极为广泛,理解公式的本质,把握公式的特征,熟练灵活地使用乘法公式,可以使运算变得8简单快捷,事半功倍.考点 8、因式分解例 4(1)(2009 年本溪市) 分解因式: 29xy(2)(2009 年锦州市) 分解因式:a 2b-2ab2+b3=_.解析:因式分解的一般步骤是:若多项式的各项有公因式,就先提公因式,然后观察剩下因式的特征,如果剩下的因式是二项式,则尝试运用平方差公式;如果剩下的因式是三项式,则尝试运用完全平方公式继续分解.(1) x (y 2-9)= 29y(3)y(2)a 2b-2ab2+b3= b(a2-2ab +b2) =b(a-b)2说明:分解因式,必须进行到每一个多项式因式都不能再分解为止.

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。