温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9360634.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(柯西不等式讲义(共2页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上柯西不等式讲义基本不等式展示:由于所以当且仅当时,等号成立。1、 讲解二维柯西不等式定理,并给出两个相关推论:二维形式的柯西不等式:若都是实数,则当且仅当时,等号成立。推论一:推论二:2、 练习巩固新知识:例一:已知为实数,证明:【讲解】:利用柯西不等式,例二:求函数的最大值。【讲解】:函数的定义域为5,6,观察式子形式,可以用推论二。即。当且仅当,即时,函数有最大值5。3、 讲解柯西不等式的向量形式:在平面直角坐标系中, ,则又而即当且仅当共线时,等号成立,即柯西不等式的向量形式:设 是两个向量,则,当且仅当是零向量,或存在实数,使得时,等号成立。又称之为Cauchy-Schwarz不等式。4、 通过柯西不等式的向量形式,将二维形式推广到三维,得到三维形式的柯西不等式:三维形式的柯西不等式:当且仅当,或存在使得时,等号成立。5、 三维柯西不等式巩固练习:例三:设为正数,求证:
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。