1、2017-2018 沪科版八年级数学上册期中试题带解析一、选择题(每小题 3 分,共 12 分)1. 下列二次根式中,与 不是同类二次根式的是( )A. B. C. D. 【专题】二次根式【分析】先对各选项二次根式化简,再根据同类二次根式的概念判断即可【解答】 【点评】本题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式2. 函数 的图像一定不经过( )A. B. C. D. 【专题】函数及其图象【分析】根据题目中的函数解析式可以判断各个选项中点的坐标是否在函数图象上,从而可以解答本题【解答】 【点评】本题考查一次函数图象上点的坐标特征,解答
2、本题的关键是明确题意,可以判断哪些点在函数图象上3. 关于 的方程 的根的情况是( )A. 有两个实数根 B. 有两个不相等的实数根C. 没有实数根 D. 有两个相等的实数根【专题】判别式法【分析】根据方程的系数结合根的判别式,即可得出=(m-1)20,由此即可得出原方程有两个实数根【解答】解:=(3m-1)2-4(2m2-m)=m2-2m+1=(m-1)2 0,方程 x2+(3m-1)x+2m2-m=0 有两个实数根故选:A【点评】本题考查了根的判别式,牢记“当0 时,方程有两个实数根”是解题的关键4. 解下列方程较为合理的方法是( )(1) (2) (3) A. 开平方法;求根公式法;求根
3、公式法 B. 求根公式法;配方法;因式分解法C. 开平方法;求根公式法;因式分解法 D. 开平方法;配方法;求根公式法【专题】常规题型【分析】观察所给方程的结构特点及各方法的优缺点解答即可【解答】解:(1)5(1+x)2=8 适合用开平方法;(2 )2x2+3x-1=0 适合用求根公式法;(3 )12x2+25x+12=0 适合用求根公式法;故选:A【点评】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据不同的方程,选择合适的方法是解题的关键二、填空题(每小题 2 分,共 28 分)5. 计算: =_【分析】先把各根式化为最简二次根式,再根
4、据二次根式的减法进行计算即可【解答】【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键6. 代数式 有意义的条件是 _【专题】常规题型【分析】直接利用二次根式有意义的条件分析得出答案【解答】【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键7. 写出 的一个有理化因式 _【专题】开放型【分析】利用有理化因式的定义求解【解答】【点评】本题主要考查了分母有理化,解题的关键是熟记有理化因式的定义8. 比较大小: _ 【专题】推理填空题;实数【分析】首先
5、分别求出 的平方的值各是多少;然后根据实数大小比较的方法,判断出 的平方的大小关系,即可判断出 的大小关系【解答】【点评】 (1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0 负实数,两个负实数绝对值大的反而小(2 )解答此题的关键是比较出 这两个数的平方的大小关系9. 方程 的解是_【专题】计算题【分析】x2-3x 有公因式 x 可以提取,故用因式分解法解较简便【解答】解:原式为 x2-3x=0,x(x-3)=0,x=0 或 x-3=0,x1=0,x2=3方程 x2-3x=0 的解是 x1=0,x2=3【点评】本题考查简单的一元二次方程的解法,在解一元二次方
6、程时应当注意要根据实际情况选择最合适快捷的解法10. 某商品的原价为 100 元,如果经过两次降价,且每次降价的百分率都是 ,那么该商品现在的价格是_元(结果用含 的代数式表示)【分析】现在的价格=第一次降价后的价格(1-降价的百分率) 【解答】解:第一次降价后价格为 100(1-m)元,第二次降价是在第一次降价后完成的,所以应为100(1-m) (1-m)元,即 100(1-m)2 元故答案为:100(1-m)2【点评】本题难度中等,考查根据实际问题情景列代数式根据降低率问题的一般公式可得:某商品的原价为 100 元,如果经过两次降价,且每次降价的百分率都是 m,那么该商品现在的价格是 10
7、0(1-m)2 11. 把命题“全等三角形的对应边相等”改写成“如果,那么”的形式:_【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面【解答】解:命题“全等三角形的对应边相等”改写成“如果,那么”的形式为如果两个三角形全等,那么这两个三角形的对应边相等故答案为如果两个三角形全等,那么这两个三角形的对应边相等【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理也考查了逆命题12. 若正比例函数 的图像经过第二、四象限,则 _【专题】常规题型;一次函数及其应用【分析】由正比例函数的定义可求得 m 的值,再根据图象
8、所在的象限进行取舍即可【解答】解:y=mx m2+m5 为正比例函数,m2+m-5=1,解得 m=-3 或 m=2,图象经过第二、四象限,m 0 ,m=-3,故答案为:-3【点评】本题主要考查正比例函数的性质,掌握正比例函数的性质是解题的关键,即在 y=kx 中,当 k0时,图象经过一、三象限,当 k 0 时,图象经过二、四象限13. 分解因式: _【专题】计算题【分析】根公式法据解方程 ax2+bx+c=0,可得方程的解,根据因式分解法可得【解答】 【点评】本题考查了因式分解,利用因式分解与相应方程两根的关系是解题关键14. 已知 是关于 的一元二次方程 的一个实数根,则 _【专题】方程思想
9、【分析】把 x=0 代入已知方程,列出关于 m 的新方程,通过解新方程来求 m 的值【解答】 把 x=0 代入,得m2-2m-3=0,解得:m1=3,m2=-1,故答案是:3 或-1【点评】本题考查了一元二次方程的解的定义能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根15. 下列方程中, ; ; (其中 是常数) ; ; ,一定是一元二次方程的有_(填编号)【专题】一元二次方程及应用【分析】根据一元二次方程的定义求解一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2 )二次项
10、系数不为 0由这两个条件得到相应的关系式,再求解即可【解答】解:x2=0 是一元二次方程;x2=y+4,含有两个未知数 x、y,不是一元二次方程;ax2+2x-3=0(其中 a 是常数) ,a=0 时不是一元二次方程;x( 2x-3)=2x(x-1) ,整理后是一元一次方程;一定是一元二次方程的有故答案为:【点评】本题利用了一元二次方程的概念只有一个未知数且未知数最高次数为 2 的整式方程叫做一元二次方程,一般形式是 ax2+bx+c=0(且 a0) 特别要注意 a0 的条件这是在做题过程中容易忽视的知识点16. 正比例函数 与反比例函数 的图像没有交点,那么 与 的乘积为_【专题】常规题型;
11、一次函数及其应用;反比例函数及其应用【分析】根据正比例函数与反比例函数的性质即可作出判断【解答】解:当 k10 时,正比例函数经过一、三象限,当 k10 时,经过二、四象限;k20 时,反比例函数图象在一、三象限, k20 时,图象在二、四象限故该两个函数的图象没有交点,则 k1、k2 一定异号k1 与 k2 的乘积为负,故答案为:负【点评】本题考查了一次函数与反比例函数的性质,正确理解性质是关键17. 对于两个不相等的实数 、 ,定义一种新的运算如下, ,如: ,那么 _【专题】新定义【分析】本题需先根据已知条件求出 5*4 的值,再求出 6*(5*4)的值即可求出结果【解答】【点评】本题主要考查了实数的运算,在解题时要先明确新的运算表示的含义是本题的关键18. 整数 的取值范围是 ,若 与 是同类二次根式,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。