精选优质文档-倾情为你奉上不可约多项式的判定及应用摘 要多项式理论是高等代数的重要组成部分,而不可约多项式是多项式中重要的概念. 本文主要对有理数域上不可约多项式的判别方法进行整理归纳, 较为系统的给出不可约多项式的判定方法。对于一般的不可约多项式的判定有Eisenstein判别法、Kronecker判别法、Perron判别法、Browm判别法等。研究了各判定方法的等价和包含关系。此外,我们还给出了不可约多项式的一些应用。关键词不可约多项式;判定方法;应用 2. 不可约多项式的概念及性质2.1 整除的概念设P是一个数域,对于中任意两个多项式与,其中,一定有中的多项式,存在,使得成立,其中或者,并且这样的,是唯一决定的。定义2.1 数域P上的多项式称为能整除,如果有数域P上的多项式使等式=成立,我们用“|”表示整除,用“”表示不能整除。定理2.1 对于数域P上的任意两个多项式,其中,|的充分必要条件是除的余式为零。证明: 如果= 0那么=,即|。反过来,如果|,那么=+0,即= 0。注1