温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9508568.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(高中数学必修5--数列经典例题集锦(共15页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上高中数学必修5数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质1. 研究通项的性质例题1. 已知数列满足. (1)求;(2)证明:.解:(1). (2)证明:由已知,故, 所以证得. 例题2. 数列的前项和记为()求的通项公式;()等差数列的各项为正,其前项和为,且,又成等比数列,求. 解:()由可得,两式相减得:,又 故是首项为1,公比为3的等比数列 ()设的公比为,由得,可得,可得故可设,又,由题意可得,解得等差数列的各项为正, 例题3. 已知数列的前三项与数列的前三项对应相同,且对任意的都成立,数列是等差数列. 求数列与的通项公式;是否存在,使得,请说明理由. 点拨:(1)左边相当于是数列前n项和的形式,可以联想到已知求的方法,当时,. (2)把看作一个函数,利用函数的思想方法来研究的取值情况. 解:(1)已知)时,)得,求得,在中令,可
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。