精选优质文档-倾情为你奉上学生做题前请先回答以下问题问题1:几何最值问题的理论依据是什么?答:两点之间,_;(已知两个定点)_最短(已知一个定点、一条定直线);三角形_(已知两边长固定或其和、差固定)答:问题2:做题前,读一读,背一背:答:直线L及异侧两点A B 求作直线L上一点P,使P与A B 两点距离之差最大作A点关于L的对称点A1,连接A1B,并延长交L的一点就是所求的P点.这样就有:PA=PA1,P点与A,B的差PA-PB=PA1-PB=A1B.下面证明A1B是二者差的最大值.首先在L上随便取一个不同于P点的点P1,这样P1A1B就构成一三角形,且P1A1=P1A.根据三角形的性质,二边之差小于第三边,所以有:P1A1-P1BA1B,即:p1A-p1BA1B.这就说明除了P点外,任何一个点与A,B的距离差都小于A1B.反过来也说明P点与A,B的距离差的最大值是A1B.所以,P点就是所求的一点.几何