温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9671082.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(数列求和中常见放缩方法和技巧(共14页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上数列求和中常见放缩方法和技巧一、放缩法常见公式:(1)(2)(3)(4)(二项式定理)(5),(常见不等式)常见不等式:1、均值不等式;2、三角不等式;3、糖水不等式;4、柯西不等式;5、绝对值不等式;若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4. 已知nN*,求。证明:因为,则,证毕。例5. 已知且,求证:对所有正整数n都成立。证明:因为,所以,又,所以,综合知结论成立。例6、求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。例6. 已知函数,证明:对于且都有。证明:由题意知:,又因为且,所以只须证,又因为 ,所以。例3. 已知a、b、c为三角形的三边,求证:。证明:由于a、b、c为正数,所以,所以,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。