1、X射线衍射分析原理与应用,X射线衍射仪操作培训,第一讲 X射线衍射基本原理,X射线物理学基础X射线衍射的方向X射线衍射的强度,X射线物理基础,X射线的本质X射线的产生X射线谱,X射线的本质,1895年德国物理学家“伦琴”发现X射线的性质特点肉眼不可见,但能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。对生物细胞有杀伤作用。,X射线的本质,X射线是一种波长很短的电磁波,波长在108cm左右,具有波动性和粒子性。,X射线在电磁波谱中的位置,X射线的波粒二相性,波动性:,粒子性:,X射线的产生,X射线的产生:X
2、射线是高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。,X射线管,X射线管,(1)阴极(灯丝)发射电子。 由钨丝制成,加热后热辐射电子。(2)阳极(靶)发射X射线。 使电子突然减速并释放X射线。(3)窗口X射线出射通道。 既能让X射线出射,又能使管密封。窗口材料用金属铍或硼酸铍锂。窗口与靶面常成3-6的斜角,以减少靶面对出射X射线的阻碍。,X射线管,(4)高速电子转换成X射线的效率只有1%,其余99%都作为热而散发了。所以靶材料要导热性能好,常用黄铜或紫铜制作,还需要循环水冷却。因此X射线管的功率有限,大功率需要用旋转阳极。(5)焦点阳极靶表面被电子轰击的一块
3、面积,X射线就是从这块面积上发射出来的。焦点的尺寸和形状是X射线管的重要特性之一。焦点的形状取决于灯丝的形状,螺形灯丝产生长方形焦点。,X射线管的性能,X射线衍射工作中希望细焦点和高强度: 细焦点提高分辨率 高强度缩短暴光时间、提高信号强度,旋转阳极,上述常用X射线管的功率为5003000W。目前还有旋转阳极X射线管、细聚焦X射线管和闪光X射线管。因阳极不断旋转,电子束轰击部位不断改变,故提高功率也不会烧熔靶面。目前有100kW的旋转阳极,其功率比普通X射线管大数十倍。,X射线谱- 连续X射线谱,X射线强度与波长的关系曲线,称之X射线谱。在管压很低时,小于20kv的曲线是连续变化的,故称之连续
4、X射线谱,即连续谱。,X射线谱- 特征X射线谱,当管电压超过某临界值时,特征谱才会出现,该临界电压称激发电压。当管电压增加时,连续谱和特征谱强度都增加,而特征谱对应的波长保持不变。 钼靶X射线管当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加有少数强谱线,它们即特征X射线谱。钼靶X射线管在35KV电压下的谱线,其特征x射线分别位于0.63和0.71处,后者的强度约为前者强度的五倍。这两条谱线称钼的K系,特征X射线的产生机理,特征X射线的产生机理与靶物质的原子结构有关。 原子壳层按其能量大小分为数层,通常用K、L、M、N等字母代表它们的名称。 但当管电压达到或超过某一临界值
5、时,则阴极发出的电子在电场加速下,可以将靶物质原子深层的电子击到能量较高的外部壳层或击出原子外,使原子电离。阴极电子将自已的能量给予受激发的原子,而使它的能量增高,原子处于激发状态。如果K层电子被击出K层,称K激发,L层电子被击出L层,称L激发,其余各层依此类推。,特征X射线的产生机理,产生K激发的能量为WKhK,阴极电子的能量必须满足eVWKhK,才能产生K激发。其临界值为eVKWK ,VK称之临界激发电压。处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因物质一定,原子结构一定,两特
6、定能级间的能量差一定,故辐射出的特征X射波长一定。,当K电子被打出K层时,若L层电子来填充K空位,则产生K辐射。X射线的能量为电子跃迁前后两能级的能量差,即,特征X射线的命名方法,特征X射线的命名方法,同样当K空位被M层电子填充时,则产生K辐射。M能级与K能级之差大于L能级与K能级之差,即一个K光子的能量大于一个K光子的能量; 但因LK层跃迁的几率比MK迁附几率大,故K辐射强度比K辐射强度大五倍左右。显然, 当L层电子填充K层后,原子由K激发状态变成L激发状态,此时更外层如M、N层的电子将填充L层空位,产生L系辐射。因此,当原子受到K激发时,除产生K系辐射外,还将伴生L、M等系的辐射。除K系辐
7、射因波长短而不被窗口完全吸收外,其余各系均因波长长而被吸收。K双线的产生与原子能级的精细结构相关。L层的8个电子的能量并不相同,而分别位于三个亚层上。K双线系电子分别由L和L两个亚层跃迁到K层时产生的辐射,而由LI亚层到K层因不符合选择定则(此时l0),因此没有辐射。,X射线与物质的相互作用,当一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果,并且吸收是造成强度衰减的主要原因。,当X射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,其振动频率与入射X射线的频率相同。任何带电粒子作受迫振动时将产生交变电磁场,从而向四周辐射电磁波,其频率与带电粒子的振动频率相同。由于散射线
8、与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。相干散射是X射线在晶体中产生衍射现象的基础。,X射线的散射,X射线的吸收曲线,X射线通过物质时的衰减,是吸收和散射造成的。如果用m仍表示散射系数,m表示吸收系数。在大多数情况下吸收系数比散射系数大得多,故mm。质量吸收系数与波长的三次方和元素的原子序数的三次方近似地成比例,因此,吸收限的应用 -X射线滤波片的选择,在一些衍射分析工作中,我们只希望是k辐射的衍射线条,但X射线管中发出的X射线,除K辐射外,还含有K辐射和连续谱,它们会使衍射花样复杂化。获得单色光的方法之一是在X射线出射的路径上放置一定厚度的滤波片
9、,可以简便地将K和连续谱衰减到可以忽略的程度。,滤波片的选择规则,Z靶40时,Z滤Z靶-1Z靶40时,Z滤Z靶-2,吸收限的应用-阳极靶材料的选择,在X射线衍射晶体结构分析工作中,我们不希望入射的X射线激发出样品的大量荧光辐射。大量的荧光辐射会增加衍射花样的背底,使图象不清晰。避免出现大量荧光辐射的原则就是选择入射X射线的波长,使其不被样品强烈吸收,也就是选择阳极靶材料,让靶材产生的特征X射线波长偏离样品的吸收限。根据样品成分选择靶材的原则是: Z靶Z样-1;或Z靶Z样。对于多元素的样品,原则上是以含量较多的几种元素中最轻的元素为基准来选择靶材。,1895年伦琴发现X射线后,认为是一种波,但无
10、法证明。当时晶体学家对晶体构造(周期性)也没有得到证明。,1912年劳厄将X射线用于CuSO4晶体衍射同时证明了这两个问题,从此诞生了X射线晶体衍射学,X射线衍射,X射线衍射可归结为两方面的问题,衍射方向和衍射强度衍射方向问题是依靠布拉格方程(或倒易点阵)的理论导出的;衍射强度主要介绍多晶体衍射线条的强度,将从一个电子的衍射强度研究起,接着研究一个原子的、一个晶胞的以至整个晶体的衍射强度,最后引入一些几何与物理上的修正因数,从而得出多晶体衍射线条的积分强度。,布拉格定律的推证,当射线照射到晶体上时,考虑一层原子面上散射射线的干涉。当射线以角入射到原子面并以角散射时,相距为a的两原子散射x射的光
11、程差为: 当光程差等于波长的整数倍(n)时 ,在角方向散射干涉加强。即程差=0,从上式可得 即,只有当入射角与散射角相等时,同层原子面上所有原子的散射波干涉将会加强。因此,常将这种散射称从晶面反射。,布拉格定律的推证,X射线有强的穿透能力,晶体的散射线来自若干层原子面,各原子面的散射线之间还要互相干涉。两相邻原子面的散射波的干涉,其光程差:当光程差等于波长的整数倍时,相邻原子面散射波干涉加强,即干涉加强条件为:,射线在晶体中的衍射,实质上是晶体中各原子相干散射波之间互相干涉的结果。但因衍射线的方向恰好相当于原子面对入射线的反射,故可用布拉格定律代表反射规律来描述衍射线束的方向。在以后的讨论中,
12、常用“反射”这个术语描述衍射问题,或者将“反射”和“衍射”作为同义词混合使用。但应强调指出,x射线从原子面的反射和可见光的镜面反射不同,前者是有选择地反射,其选择条件为布拉格定律;而一束可见光以任意角度投射到镜面上时都可以产生反射,即反射不受条件限制。因此,将x射线的晶面反射称为选择反射,反射之所以有选择性,是晶体内若干原子面反射线干涉的结果。,Bragg定律讨论-(1)选择反射,Bragg定律讨论-(2)衍射极限条件,由布拉格公式2dsin=n可知,sin=n/2d,因sin/2的晶面才能产生衍射。例如的一组晶面间距从大到小的顺序:2.02,1.43,1.17,1.01 ,0.90 ,0.8
13、3 ,0.76 当用波长为k=1.94的铁靶照射时,因k/2=0.97,只有四个d大于它,故产生衍射的晶面组有四个。如用铜靶进行照射, 因k/2=0.77, 故前六个晶面组都能产生衍射。,Bragg定律的讨论-(3)干涉面和干涉指数,为了使用方便, 常将布拉格公式改写成。如令 ,则可将(hkl)晶面的n级反射,看成(HKL)晶面的1级反射。 (HKL) 与(hkl)面互相平行,晶面间距为(hkl)晶面的1/n。 (HKL)晶面不一定是晶体中的原子面,而是为了简化布拉格公式而引入的反射面,常将它称为干涉面。,Bragg定律的讨论-(3)干涉面和干涉指数,干涉指数有公约数n,而晶面指数只能是互质的
14、整数。当干涉指数也互为质数时,它就代表一组真实的晶面。可将干涉指数视为晶面指数的推广,是广义的晶面指数。,布拉格方程应用,布拉格方程是X射线衍射分析中最重要的基础公式,反映衍射时说明衍射的基本关系,所以应用非常广泛。从实验角度可归结为两方面的应用:一方面是用已知波长的X射线去照射晶体,通过衍射角的测量求得晶体中各晶面的面间距d,这就是结构分析- X射线衍射学;另一方面是用一种已知面间距的晶体来反射从试样发射出来的X射线,通过衍射角的测量求得X射线的波长,这就是X射线光谱学。该法除可进行光谱结构的研究外,从X射线的波长还可确定试样的组成元素。电子探针就是按这原理设计的。,X射线的强度,X射线衍射
15、理论能将晶体结构与衍射花样有机地联系起来,它包括衍射线束的方向、强度和形状。衍射线束的方向由晶胞的形状大小决定衍射线束的强度由晶胞中原子的位置和种类决定,衍射线束的形状大小与晶体的形状大小相关。下面我们将从一个电子、一个原子、一个晶胞、一个晶体、粉末多晶循序渐进地介绍它们对X射线的散射,讨论散射波的合成振幅与强度,一个原子对X射线的衍射,当一束x射线与一个原子相遇,原子核的散射可以忽略不计。原子序数为Z的原子周围的Z个电子可以看成集中在一点,它们的总质量为Zm,总电量为Ze,衍射强度为: 原子中所有电子并不集中在一点,他们的散射波之间有一定的位相差。则衍射强度为: f试样的被照射面积时,可以近
16、似满足聚焦条件。完全满足聚焦条件的只有O点位置,其它地方X射线能量分散在一定的宽度范围内,只要宽度不太大,应用中是容许的。,探测器与记录系统,X射线衍射仪使用的辐射探测器有:正比计数器、盖革管、闪烁计数器、Si(Li)半导体探测器、位敏探测器等,其中常用的是正比计数器和闪烁计数器。,正比计数器,正比计数器是由金属圆筒(阴极)与位于圆筒轴线的金属丝(阳极)组成。金属圆筒外用玻璃壳封装,内抽真空后再充稀薄的惰性气体,一端由对X射线高度透明的材料如铍或云母等做窗口接收X射线。当阴阳极间加上稳定的600-900V直流高压,没有X射线进入窗口时,输出端没有电压;若有X射线从窗口进入,X射线使惰性气体电离
17、。气体离子向金属圆筒运动,电子则向阳极丝运动。由于阴阳极间的电压在600-900V之间,圆筒中将产生多次电离的“雪崩”现象,大量的电子涌向阳极,这时输出端就有电流输出,计数器可以检测到电压脉冲。,X射线强度越高,输出电流越大,脉冲峰值与X射线光子能量成正比,所以正比计数器可以可靠地测定X射线强度。,闪烁计数器,闪烁计数器是利用X射线作用在某些物质(如磷光晶体)上产生可见荧光,并通过光电倍增管来接收探测的辐射探测器,其结构如图3-12所示。当X射线照射到用铊(含量0.5%)活化的碘化钠(NaI)晶体后,产生蓝色可见荧光。蓝色可见荧光透过玻璃再照射到光敏阴极上产生光致电子。由于蓝色可见荧光很微弱,
18、在光敏阴极上产生的电子数很少,只有6-7个。但是在光敏阴极后面设置了多个联极(可多达10个),每个联极递增100V正电压,光敏阴极发出的每个电子都可以在下一个联极产生同样多的电子增益,这样到最后联极出来的电子就可多达106-107个,从而产生足够高的电压脉冲。,闪烁计数器,衍射图谱,实验条件选择 (一)试样,衍射仪试样可以是金属、非金属的块、片或粉末状。XRD-7000还可以是流体或液态。对于块状、片状试样可以用粘接剂将其固定在试样框架上,并保持一个平面与框架平面平行;粉末试样用粘接剂调和后填入试样架凹槽中,使粉末表面刮平与框架平面一致。试样对晶粒大小、试样厚度、择优取向、应力状态和试样表面平
19、整度等都有一定要求。 衍射仪用试样晶粒大小要适宜,在1m-5m左右最佳。粉末粒度也要在这个范围内,一般要求能通过325目的筛子为合适。试样的厚度也有一个最佳值,大小为:,实验条件选择 (一)试样,衍射仪用试样不同于德拜照相法的试样。衍射仪的试样是平板状,具体外形如下。,实验条件选择 (二)实验参数选择,实验参数的选择对于成功的实验来说是非常重要的。如果实验参数选择不当不仅不能获得好的实验结果,甚至可能将实验引入歧途。在衍射仪法中许多实验参数的选择与德拜法是一样的,这里不再赘述。,实验条件选择 (二)实验参数选择,选择阳极靶和滤波片是获得衍射谱图的前提。根据吸收规律,所选择的阳极靶产生的X射线不
20、会被试样强烈地吸收,即Z靶 Z样或Z靶 Z样。滤波片的选择是为了获得单色光,避免多色光产生复杂的多余衍射线条。实验中通常仅用靶材产生的K线条照射样品,因此必须滤掉K等其它特征射线。滤波片的选择是根据阳极靶材确定的。在确定了靶材后,选择滤波片的原则是: 当Z靶 40时,Z滤 = Z靶 - 1; 当Z靶 40时,Z滤 = Z靶 2,,实验条件选择 (二)实验参数选择,获得单色光的方法除了滤波片以外,还可以采用单色器。单色器实际上是具有一定晶面间距的晶体,通过恰当的面间距选择和机构设计,可以使入射X射线中仅K产生衍射,其它射线全部被散射或吸收掉。以K的衍射线作为入射束照射样品是真正的单色光。但是,单
21、色器获得的单色光强度很低,实验中必须延长曝光时间或衍射线的接受时间。,实验条件选择 (二)实验参数选择,实验中还需要选择的参数有X射线管的电压和电流。通常管电压为阳极靶材临界电压的3-5倍,此时特征谱与连续谱的强度比可以达到最佳值。管电流可以尽量选大,但电流不能超过额定功率下的最大值。,实验条件选择 (二)实验参数选择,衍射仪实验参数还有狭缝光栏、时间常数和扫描速度。防散射光栏与接收光栏应同步选择。选择宽的狭缝可以获得高的X射线衍射强度,但分辨率要降低;若希望提高分辨率则应选择小的狭缝宽度。时间常数。选择时间常数RC值大,可以使衍射线的背底变得平滑,但将降低分辨率和强度,衍射峰也将向扫描方向偏
22、移,造成衍射峰的不对称宽化。因此,要提高测量精度应该选择小的时间常数RC值。通常选择时间常数RC值小于或等于接收狭缝的时间宽度的一半。时间宽度是指狭缝转过自身宽度所需时间。这样的选择可以获得高分辨率的衍射线峰形。扫描速度是指探测器在测角仪圆周上均匀转动的角速度。扫描速度对衍射结果的影响与时间常数类似,扫描速度越快,衍射线强度下降,衍射峰向扫描方向偏移,分辨率下降,一些弱峰会被掩盖而丢失。但过低的扫描速度也是不实际的。,第三讲 X射线衍射物相分析原理及方法,PDF卡片物相定性分析原理与方法物相定量分析原理与方法,第四讲 XRD-7000S衍射仪的操作,开、关机步骤实验参数及设定X射线衍射图谱分析
23、操作注意事项,第五讲 XRD-7000S衍射仪附件,薄膜附件应力附件加热附件,薄膜附件,薄膜法光路,薄膜衍射光路,标准衍射光路,衬底,薄膜 (100nm),薄膜法功能与特点,适合测定从10nm至100nm厚的薄膜。使用薄膜附件可消除衬底对膜层衍射的影响。不仅可进行薄膜的物相分析,还可测定薄膜的取向度,还可在一定程度上获得薄膜厚度的信息。,2法与薄膜法分析TiN的深度比较,薄膜測定实例(ITO薄膜),薄膜测定实例(TiN涂层),铜板上金涂层薄膜的测定,用薄膜法测定硬盘,硬盘的截面结构,用薄膜法测定硬盘,XRD-7000用高温附件(HTK-1200),使用温度范围室温 1200 主要尺寸外径 15
24、0mm厚度 60mm射线窗口 10mm/200试样台尺寸 20mm射线窗口材料 聚酰亚胺薄膜或铝薄膜温度传感器 热电偶(PtRhPt)气氛 大气 保护气(腐蚀性气体也可) 真空(10E-4mbar),HTK-1200高温试样加熱附件,试样加热测定实例(阿斯匹林),应力附件,晶体中应变的种类,应力,晶格畸变,X射线衍射法应力测定原理,2,Sin2,2,Sin2,Ecot,(),Sin,衍射谱多重输出,应力测定计算结果,第六讲 X射线衍射分析的应用,物相分析点阵常数精确测定织构测定单晶分析宏观应力测定微晶尺寸和微观应力分析,物相分析,物相分析,物相分析: 确定元素的存在状态,即是什么物相(晶体结构
25、)。物相分析方法: 材料由哪些物相构成可以通过X射线衍射分析加以确定,这些工作称之物相分析或结构分析。,X射线物相定性分析原理,X射线物相分析是以晶体结构为基础,通过比较晶体衍射花样来进行分析的。对于晶体物质中来说,各种物质都有自己特定的结构参数(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X射线衍射花样也就各不相同,所以通过比较X射线衍射花样可区分出不同的物质。当多种物质同时衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加。它们互不干扰,相互独立,逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。,X射线物相定性分析原理,目前已知
26、的晶体物质已有成千上万种。事先在一定的规范条件下对所有已知的晶体物质进行X射线衍射,获得一套所有晶体物质的标准X射线衍射花样图谱,建立成数据库。当对某种材料进行物相分析时,只要将实验结果与数据库中的标准衍射花样图谱进行比对,就可以确定材料的物相。X射线衍射物相分析工作就变成了简单的图谱对照工作。,X射线物相定性分析,1938年由Hanawalt提出,公布了上千种物质的X射线衍射花样,并将其分类,给出每种物质三条最强线的面间距索引(称为Hanawalt索引)。1941年美国材料实验协会(The American Society for Testing Materials,简称ASTM)提出推广,
27、将每种物质的面间距d和相对强度I/I1及其他一些数据以卡片形式出版(称ASTM卡),公布了1300种物质的衍射数据。以后,ASTM卡片逐年增添。,X射线物相定性分析,1969年起,由ASTM和英、法、加拿大等国家的有关协会组成国际机构的“粉末衍射标准联合委员会”,负责卡片的搜集、校订和编辑工作,所以,以后的卡片成为粉末衍射卡(the Powder Diffraction File),简称PDF卡,或称JCPDS卡(the Joint Committee on Powder Diffraction Standarda)。,粉末衍射卡的组成,粉末衍射卡(简称ASTM或PDF卡)卡片的形式如图所示,
28、粉末衍射卡的组成,1栏:卡片序号。 2栏: 1a、1b、1c是三强线的面间距。 2a、2b、2c分别为三强线的相对强度。3栏: 1d是试样的最大面间距和相对强度。4栏:物质的化学式及英文名称 5栏:摄照时的实验条件。 6栏:物质的晶体学数据。 7栏:光学性质数据。 8栏:试样来源、制备方式、摄照温度等数据 9栏:面间距、相对强度及密勒指数。,PCPDFWIN,物相定性分析方法,如待分析试样为单相,在物相未知的情况下可用Hanawalt索引或Fink索引进行分析。用数字索引进行物相鉴定步骤如下:1 根据待测相的衍射数据,得出三强线的晶面间距值d1、d2和d3(并估计它们的误差)。2 根据最强线的
29、面间距d1,在数字索引中找到所属的组,再根据d2和d3找到其中的一行。,物相定性分析方法,3 比较此行中的三条线,看其相对强度是否与被摄物质的三强线基本一致。如d和I/I1都基本一致,则可初步断定未知物质中含有卡片所载的这种物质。4 根据索引中查找的卡片号,从卡片盒中找到所需的卡片。5 将卡片上全部d和I/I1与未知物质的d和I/I1对比如果完全吻合,则卡片上记载的物质,就是要鉴定的未知物质。,多相混合物物相定性分析方法,当待分析样为多相混合物时,根据混合物的衍射花样为各相衍射花样的叠加,也可对物相逐一进行鉴定,但手续比较复杂。具体过程为:用尝试的办法进行物相鉴定:先取三强线尝试,吻合则可定;不吻合则从谱中换一根(或二根)线再尝试,直至吻合。对照卡片去掉已吻合的线条(即标定一相),剩余线条归一化后再尝试鉴定。直至所有线条都标定完毕。,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。