温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9737820.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(复变函数教案第五章(共8页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上章节名称:第五章 留数学时安排:6学时教学要求:理解孤立奇点的概念并掌握判别孤立奇点类别的方法;理解留数的定义;熟练掌握计算留数的方法;理解留数基本定理,熟练掌握用留数理论计算积分。教学内容:1.理解孤立奇点的概念,掌握判别孤立奇点类别的方法;2了解解析函数在其孤立奇点邻域内的性质。3理解留数的定义;4熟练掌握计算留数的方法;5理解留数基本定理,熟练掌握用留数理论计算积分。教学重点:留数的定义,留数的计算教学难点:用留数理论计算积分教学手段:课堂讲授教学过程:第五章 留数1、孤立奇点1.相关定义定义1 设点为函数的奇点,若在点的某个去心邻域内解析,则称点为函数的孤立奇点定义2 设点为函数的孤立奇点:若在点的罗朗级数的主要部分为零,则称点为的可去奇点;若在点的罗朗级数的主要部分有有限多项,设为则称点为的级(阶)极点;若在点的罗朗级数的主要部分有无限多项,则称点为的本性奇点例:依定义,点为的可去奇点,点为的二级极点,点为的本性奇点2.函数
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。