温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-9858467.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(面积法在平面几何问题求解中的巧妙应用(共8页).doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
精选优质文档-倾情为你奉上平面几何问题的证明面积法(教案)教学目的:掌握面积法在平面几何解题中的巧妙应用 教学重点:1、三角形、凸四边形面积公式的推导 2、面积法在平面几何解题中的巧妙应用 教学内容: 专心-专注-专业 2002年,张景中院士推出新概念几何,其中对三角学作了全新的处理,他把边长为1、夹角为的菱形的面积定义为,由此研究正弦的性质,到处理余弦,用面积的方法证明大量的平面几何问题,把三角学和几何学打成一片,别具一格,极有新意。张院士指出:抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这就是面积法。一、为运用面积法解题,我们需要一些面积公式:1、 设中,角所对的边依次为,又为边上的高,为其外接圆半径,为其内切圆半径,则(
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。