精选优质文档-倾情为你奉上1 矩阵的相似1.1 定义 1.2性质 1.3定理(证明) 1.4 相似矩阵与若尔当标准形 2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵 相似矩阵与矩阵的对角化 相似矩阵在微分方程中的应用 【1 】) 矩阵的相似及其应用1.1 矩阵的相似定义1.1:设为数域上两个级矩阵,如果可以找到数域上的级可逆矩阵,使得,就说相似于记作1.2 相似的性质(1)反身性:;这是因为.(2)对称性:如果,那么;如果,那么有,使,令,就有,所以。(3)传递性:如果,那么。已知有使,。令,就有,因此,。1.3 相似矩阵的性质若,则:(1);引理:是一个矩阵,如果是一个可逆矩阵,是可逆矩阵,那么秩()=秩()=秩()证明:设相似,即存在数域上的可逆矩阵,使得,由引理2可知,秩()=秩()=秩()=秩()(2)设相似于,是任意多项式,则相似于,即证明:设 于是, 由于相似于,则相似与,(为任意正整数),即
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。