第三讲 解析函数的充要条件初等函数& 1. 解析函数的充要条件& 2. 举例2.2 解析函数的充要条件 如果复变函数 w = f (z) = u(x, y) + iv(x, y)在定义域 D内处处可导,则函数 w = f (z) 在 D内解析。 本节从函数 u (x , y) 及 v (x , y) 的可导性,探求函数w=f (z) 的可导性,从而给出判别函数解析的一个充分必要条件,并给出解析函数的求导方法。问题 如何判断函数的解析性呢?一. 解析函数的充要条件A 记忆定义 方程称为Cauchy-Riemann方程(简称C-R方程).定理1 设 f (z) = u (x, y) + iv(x, y)在 D 内有定义, 则 f (z)在点 z=x+iy D处可导的充要条件是 u(x, y) 和 v(x, y) 在点 (x, y ) 可微,且满足 Cauchy-Riemann方程上述条件满足时,有证明(由f (z)的可导 C-R方程满足上面已证!只须证 f (z)的可导 函数 u(x, y)、v(x, y)可微)。函数 w =f (z)点 z可导,即则 f (z+ z)-f(z)=f (z