在连续系统的仿真中,主要的计算工作是求解一阶微分方程 y =f(x,y)y( x0) = y0解析法只能用来求解一些特殊类型的方程,实际仿真问题中归结出来的微分方程主要靠数值解法。由于实际运算只能完成有限项或有限步运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这样产生的误差成为截断误差。根据实际情况建立的数学模型往往难以求解。通常需要通过近似替代,将所求解的数学模型简化为易求解的数值计算问题后再进行求解。数学模型的理论解与数值计算问题的精确解之间的误差称为截断误差。这是计算方法本身带来的误差,所以也成为方法误差。* 3得到高精度方法的一个直接想法是利用Taylor展开假设式 y =f(x,y) (axb) 中的 f(x,y) 充分光滑,将y(xi+1)在x i点作Taylor展开,若取右端不同的有限项作为y(xi+1)的近似值,就可得到计算y(xi+1)的各种不同截断误差的数值公式。例如:取前两项可得到3.2 龙格库塔方法* 4其中P阶泰勒方法若取前三项,可得到截断误差为O(h3)的公式 类似地,若取前P+1项作为y(xi+1)的近似值,便得到* 5显然p=