精选优质文档-倾情为你奉上一、()泛化误差上界:对二分类问题,当假设空间是有限个函数的集合时,对任意一个函数,至少以概率,以下不等式成立:其中,即的泛化能力:.证明:在证明中要用到Hoeffding不等式,故先叙述如下:设是独立随机变量是之和,;为这组随机变量的均值,则,以下不等式成立:对任意函数,是个独立的随机变量样本均值,是随机变量的期望值。如果损失函数取值于区间,即对所有,那么有上述Hoeffding不等式,对,以下不等式成立:由于是一有限集合,故或者等价的,对任意,有令则故至少以概率有.2、 ()以损失函数推导向量最小化感知机的损失函数感知机学习算法是误分类驱动的,具体采用随机梯度下降法。首先,任意选取一个超平面,然后用梯度下降法不断极小化目标函数,极小化的过程不是一次使中所有的误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降.随机梯度下降是一种迭代求解思路,而迭代法参数寻优的基本原理:沿着(代价)函数下降的方向寻找参数,能够找到极值点.在我们已经学过的数学知识中,导数和