精选优质文档-倾情为你奉上泛函分析复习题20121在实数轴上,令,当为何值时,是度量空间,为何值时,是赋范空间。解:若是度量空间,所以,必须有:成立即,取,有,所以,若是赋范空间,所以,必须有:成立,即,当时,若是度量空间,时,若是赋范空间。2若是度量空间,则,也是使成为度量空间。解:由于是度量空间,所以有:1),因此和且当时,于是和以及若或均有成立,于是成立2),因此和3),因此以及设,所以单增,所以综上所述和均满足度量空间的三条件,故和均使成为度量空间。3设是内积空间,则当,时,即内积关于两变元连续。解:是内积空间,设是由其内积导出的范数,由于,所以,使得当时均有和同时由于,故知有界,所以有限。因此可取因此故,即4设是线性赋范空间,是线性算子,则不是连续的,当且仅当,使得,但解:设不是连续的,则在上的每一点都不是连续的,因此在点也不是连续的。则在包含上0点的任何有界邻域内均无界,取
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。