精选优质文档-倾情为你奉上 原函数图像与导函数图像的关系探究利用导函数的图象可以形象地描述原函数的单调、极值情况,所以有关图像问题是近几年高考热点问题,如何研究这类图像问题,这类问题有什么解题策略,为帮助大家学习下面总结如下。结论一:由导函数函数值符号看原函数结论1:连续可导函数的导函数图像在轴上方(可与轴有若干个离散的交点)的区间上,原函数单调递增;在轴下方(可与轴有若干个离散的交点)的区间上,原函数单调递减。同理可以根据原函数图像研究导函数的图像。例1设是函数的导数, 的图象如右图所示, 则的图象最有可能是( ) 分析:先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间解析:由导函数的图象可知,原函数的单调性应为增,减,增,故选C.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减例2.已知二次函数的图象如上图所示