机械与汽车工程学院节能车转向系设计说明书.doc

上传人:龙*** 文档编号:1010941 上传时间:2018-11-15 格式:DOC 页数:27 大小:3.08MB
下载 相关 举报
机械与汽车工程学院节能车转向系设计说明书.doc_第1页
第1页 / 共27页
机械与汽车工程学院节能车转向系设计说明书.doc_第2页
第2页 / 共27页
机械与汽车工程学院节能车转向系设计说明书.doc_第3页
第3页 / 共27页
机械与汽车工程学院节能车转向系设计说明书.doc_第4页
第4页 / 共27页
机械与汽车工程学院节能车转向系设计说明书.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、 节能车转向系设计说明书学校:福建工程学院学院:机械与汽车工程学院班级:姓名:指导老师:二零一五年六月三十日目录摘要.3Abstract.31 绪论.31.1 前言.31.2 设计思路.32 汽车转向系统概述.42.1 转向系的主要要求.42.2 转向系统分类.42.3 转向系布置设计.43 转向器的结构型式.43.1 循环球式转向器.53.2 齿轮齿条式转向器.63.2.1 材料的选择.63.2.2 齿轮齿条式转向器优缺点.83.2.5 齿条断面形状.83.2.6 齿轮齿条式转向器和转向梯形相对位置.84 转向操纵机构.95 转向传动机构.96 节能车转向系基本结构的选取.107 节能车主要

2、性能参数的计算及选定.137.1 转向系的效率.147.2 转向系的传动比.148 转向梯形机构的优化.158.1 转向梯形机构概述.158.2 整体式转向梯形的结构方案分析.158.3 整体式转向梯形的优化分析.168.4 编写 MATLAB 程序 .198.5 程序介绍.209 转向传动机构的强度校核 .229.1 转向横拉杆.229.1.1 抗拉校核.229.1.2 稳定性校核.229.1.3 结论.239.2 横拉杆球头直径的选取.239.3 转向摇臂危险断面的校核.249.4 转向摇臂与摇臂轴连接花键的校核计算.24结论.26致谢.26参考文献.27学 生 节 能 车 转 向 系 设

3、 计摘要: 转向系统在赛车中占有重要的地位,转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性。本课题首先通过分析转向系的功能要求,结合转向系统的布置设计,比较各类型 的转向器的优缺点,适应节能车轻质量的要求,决定采用杆系结构的转向系统。编写MATLAB程序,建立适当的约束对转向梯形进行优化设计。并对转向系传动机构进行必要的力学分析和校核。使用catia软件画出三维图,完成节能车转向系的设计。关 键 词 : 节 能 车 , 转 向 系 , 转 向 传 动 机 构 , 杆 系 结 构1 绪论1.1 前言转向系统在赛车中占有重要的地位,通过对转向系的优化设计,来为赛车其他零部件分

4、析优化提供思路,以达到对节能车车的结构整体优化。转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性,它对于确保车辆的行驶安全、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要作用。1.2 设计思路 本课题在综合考虑众多因素的基础上先从转向系最基本的原理入手,经过对汽车的转向系原理的认真学习,来摸索着设计赛车的转向系。设计过程中,先是比较各个类型转向系的优缺点,并结合赛车对转向系的一些特殊要求,最后决定采用质量最轻形化杆系结构的转向系。因为目前梯形结构的转向系的转角关系较接近理想的转角关系,又鉴于赛车采用非悬架结构,因此采用整体式梯形结构。轴距由车架来确定,主

5、销偏移距由总设计决定。这样一来,转向系的优化过程中只需优化梯形臂长 m,梯形底角 和主销连线到横拉杆的水平距离 h。h 值越大转向越省力,但又考虑到安装的空间问题,h 值不能过大。对梯形臂长 m 和梯形底角 的优化时,采用求最小 h 值的方法,并将实际内、外转角的关系曲线和理想的内、外转角的关系曲线画在同一张图上,依据最小 h 值得出理想的转向梯形的尺寸。各个杆件的参数变量确定以后,根据最小半径的要求计算出车轮的最大转角,然后综合各种因素确定转向系统的力传动比,角传动比。2 汽车转向系统概述转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。转向系由

6、转向器、转向操纵机构和转向传动机构组成。转向操纵机构又包括方向盘、转向轴、转向管柱。转向传动机构包括转向摇臂、转向横拉杆、转向节臂。2.1 转向系的主要要求 1 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。 2)汽车转向行驶时,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。 3)汽车在任何行驶状态下,转向轮都不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。 5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。 6)操纵轻便。

7、 7) 转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。 8) 转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。 9) 在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10) 进行运动校核,保证转向轮与转向盘转动方向一致。2.2 转向系统分类随着现代汽车技术的迅速发展,汽车转向系统已从纯机械式转向系统、液压助力转向系(HPS ) 、电控液压助力转向系统(EHPS ) ,发展到利用现代电子和控制技术的电动助力转向系统(EPS)及线控转向系统(SBW ) 。 按转向力能源的不同,可将转向系分为机械转向系和动力转向系。机

8、械转向系的能量来源是人力,所有传力件都是机械的,机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构一系列的杆件传递到转向轮来使转向偏转。机械式转向系统工作过程为:驾驶员对转向盘施加的转向力矩通过转向轴输入转向器,减速传动装置的转向器中有 1、2 级减速传动副,经转向器放大后的力矩和减速后的运动传到转向横拉杆,再传给固定于转向节上的转向节臂,使转向节和它所支承的转向轮偏转,从而实现汽车的转向。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动(严格讲是近似直线运动) 的机构,是转向系的核心部件。 机械转向器是将驾驶员对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动)

9、,并按一定的角转动比和力转动比进行传递的机构。 机械转向器与动力系统相结合,构成动力转向系统。高级轿车和重型载货汽车为了使转向轻便,多采用这种动力转向系统。采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。 2.3 转向系布置设计转向系统的布置先从转向器的布置开始的。转向器的布置首先要考虑对中性,要将转向器布置在车架的正中间位置,才能保证左右转向的对称和灵活。其次,转向器要保证不和车架干涉,且车手的腿能够伸缩自如,能够方便灵活地踩踏刹车盘和油门。横拉杆的位置也随着转向器位置的确定而确定了,同时梯形臂的位置也根据轮辋的位置、设计长度和角

10、度以及加工需要,确定了位置。因此转向系统和车架的连接等也都确定了。接着就要考虑转向器和方向盘之间的连接。转向器轴是竖直放置的,而方向盘的放置需要和竖直方向有一定得夹角,因此,两者的连接就需要采用三节式万向节。同时方向盘还要固定在车架上,以防止方向盘晃动。3 转向器的结构型式根据所采用的转向传动副的不同转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。下面分别介绍几种常见的转向器。 23.1 循环球式转向器循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及螺母上的齿条和摇臂

11、轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、寿命长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。3.2 齿轮齿条式转向器齿轮齿条式转向器的传动副为齿轮与齿条,其结构简单、布置方便,制造容易,但转向传动比较小,(一般不大于 15),且齿条沿其长度方向磨损不均匀,故仅广泛用于微型汽车和轿车上。转向传动副的主动件是一斜齿圆柱小齿轮,它和装在外壳中的从动件齿

12、条相啮合,外壳固定在车身或车架上。齿条利用两个球接头直接和两根分开的左、右横拉杆相联。横拉杆再经球接头与梯形臂相接。为了转向轻便,主动小齿轮的直径应尽量小。通常,这类转向器的齿轮模数多在 23mm 范围内,压力角为 20,主动小齿轮有 58个齿,螺旋角为 915。根据小齿轮螺旋角和齿条倾斜角的大小和方向的不同,可以构成不同的传动方案。应根据整车布置的需要并考虑转向系的传动比及效率等来选择这些角度的大小和方向。3.2.1 材料齿轮齿条式转向器的主动小齿轮可采用低碳合金钢如 20MnCr5、20MnCr4 或15CrNi6(德国标准 DIN 17210)制造并经渗碳淬火;齿条可采用中碳钢或中碳合金

13、钢如 45 号钢或 41Cr4 钢(德国标准 DIN 17200)制造并经高频淬火,表面硬度均应在 HRC 56 以上。壳体常用铝合金压铸。3.2.2 齿轮齿条式转向器优缺点 齿轮齿条式转向器由与转向轴做成一体的转向齿轮常与转向横拉杆做成一体的齿条组成。与其它形式转向器比较,齿轮齿条式转向器最主要的优点是:结构简单、紧凑;壳体采用铝合金或镁合金压铸而成,转向器的质量比较小;传动效率高达 90;齿轮与齿条之间因磨损出现间隙后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧,可自动消除齿间间隙,这不仅可以提高转向系统的刚度,还可以防止工作时产生冲击和噪声;转向器占用的体积小;没有转向摇臂

14、和直拉杆,所以转向轮转角可以增大;制造成本低;转向机构总成完全封闭,可免于维护;因齿轮和齿条直接啮合,操纵灵敏性非常高。特别适于与烛式和麦弗逊式悬架配用,便于布置等优点。因此,目前它在轿车、微型、轻型货车上得到广泛的应用。例如,一汽的红旗 CA7220型轿车、奥迪 100 型轿车、捷达轿车、上海桑塔纳轿车、天津夏利轿车以及天津 TJ1010 型微型货车和南京依维柯轻型货车等,都采用了这种齿轮齿条式转向器。齿轮齿条式转向器的主要缺点是:因逆效率高(60%-70%) ,汽车在不平路面上行驶时,发生在转向轮与路面之间冲击力的大部分能传至转向盘,称之为反冲。反冲现象会使驾驶员精神紧张,并难以准确控制汽

15、车行驶方向,方向盘突然转动会造成打手,同时对驾驶员造成伤害。3.2.3 输入输出形式的选择根据输入齿轮位置和输出特点不同,齿轮齿条式转向器有四种形式:中间输入,两端输出(图 3.2a) 、侧面输入,两端输出(图 3.2b) 、侧面输入,中间输出(图 3.2c)、侧面输入,一端输出(图 3.2d)。图3.2 输入输出形式两端输出的齿轮齿条式转向器如图 3.3 所示,作为传动副主动件的转向齿轮轴 11 通过轴承 12 和 13 安装在转向器壳体 5 中,其上端通过花键与万向节叉 10 和转向轴连接。与转向齿轮啮合的转向齿条 4 水平布置,两端通过球头座 3 与转向横拉杆 1 相连。弹簧 7 通过压

16、块 9 将齿条压靠在齿轮上,保证无间隙啮合。弹簧的预紧力可用调整螺塞 6 调整。当转动转向盘时,转向器齿轮 11 转动,使与之啮合的齿条 4 沿轴向移动,从而使左右横拉杆带动转向节左右转动,使转向车轮偏转,从而实现汽车转向。采用两端输出方案时,由于转向拉杆长度受限制,容易与悬架系统导向机构产生运动干涉。但其结构简单,制造方便,且成本低等特点,常用于小型车辆上。图3.3 两端输出式1.转向横拉杆 2.防尘套 3.球头座 4.转向齿条 5.转向器壳体 6.调整螺塞 7.压紧弹簧 8.锁紧螺母 9.压块 10.万向节 11.转向齿轮轴 12.向心球轴承 13.滚针轴承中间输出的齿轮齿条式转向器如图

17、3.4 所示,其结构及工作原理与两端输出的齿轮齿条式转向器基本相同,不同之处在于它在转向齿条的中部用螺栓 6 与左右转向横拉杆 7 相连。在单端输出的齿轮齿条式转向器上,齿条的一端通过内外托架与转向横拉杆相连。与齿条固连的左、右拉杆延伸到接近汽车总想对称平面附近。由于拉杆长度增加,车轮上、下跳动时拉杆摆角减小,有利于减少车轮上下跳动时转向系与悬架系的运动干涉。拉杆与齿条用螺栓固定连接,因此,两拉杆与齿条同时向左或向右移动,为此在转向器壳体上开有轴向的长槽,从而降低了它的强度。图3.4 中间输出1.万向节叉 2.转向齿轮轴 3.调整螺母 4.向心球轴承 5.滚针轴承 6.固定螺栓 7.转向横拉杆

18、 8.转向器壳体 9.防尘套 10.转向齿条 11.调整螺塞 12.锁紧螺母 13.压紧弹簧 14.压块 3.2.4 齿轮啮合方式齿轮齿条式转向器若采用直齿圆柱齿轮与直齿齿条啮合,则运转平稳性降低,冲击力大,工作噪声增加。此外,齿轮轴线与齿条轴线之间的夹角只能是直角。采用斜齿圆柱齿轮与斜齿齿条啮合的齿轮齿条式转向器,重合度增加,运转平稳,冲击与噪声均降低,而且齿轮轴线与齿条轴线之间的夹角易于满足总体设计的要求。因为斜齿工作时有轴向力作用,所以转向器应该采用推力轴承,是轴承寿命降低,还有斜齿轮的滑磨比较大事它的缺点。图3.5 齿条断面形状3.2.5 齿条断面形状齿条断面形状有圆形、V 形和 Y

19、形三种。圆形断面齿条的制作工艺比较简单。 V 形和Y 形断面齿条与圆形断面比较,消耗的材料少,约节约 20%,故质量小;位于齿下面的两斜面与齿条托座接触,可用来防止齿条绕轴线转动;Y 形的断面齿条的齿宽可以做的宽一些,因而强度得到增加。在齿条与托座之间通常装有碱性材料(如聚四氟乙烯)做的垫片,以减少滑动摩擦。当车轮跳动、转向或转向器工作时,如在齿条上作用有能使齿条旋转的力矩时,应选用 V 形和 Y 形断面齿条,用来防止因齿条旋转而破坏齿条、齿轮的齿不能正确啮合的情况出现。图3.6 转向梯形的相对位置3.2.6 齿轮齿条式转向器和转向梯形相对位置根据齿轮齿条式转向器和转向梯形相对前轴位置的不同,

20、齿轮齿条式转向器在汽车上有四种布置形式:转向器位于前轴后方,后置梯形;转向器位于前轴后方,前置梯形;转向器位于前轴前方,后置梯形;转向器位于前轴前方,前置梯形。如图 3.2.6。对转向器结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于 1.2t 的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于 2.5t 且无动力转向和不大于 4t 带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛

21、使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。4 转向操纵机构 图4 转向操纵机构1-转向万向节;2-转向传动轴;3-转向管柱;4-转向轴;5-转向盘 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装配位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图 4。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。5 转向传动机构 转向传动机构包括转向臂、转向纵拉杆、转向节臂、转向梯形臂以及转向横拉杆等。(见图5) 转向传动机构用于把转向器输出的力和运动传给左、右转向节并使左、右转向轮按一定关系进行偏转。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。