精选优质文档-倾情为你奉上欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 (n) 。 完全余数集合:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。 显然 |Zn| (n) 。有关性质:对于素数 p ,(p) = p -1 。对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 (n) = (p -1) * (q -1) 。这是因为 Zn = 1, 2, 3, . , n - 1 - p, 2p, . , (q - 1) * p - q, 2q, . , (p - 1) * q , 则 (n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) (p) * (q) 。欧拉定理 :对于互质的正整数 a 和 n ,有 a(n) 1 mod n 。证明:( 1 ) 令 Zn = x1, x2, .,