精选优质文档-倾情为你奉上 解析几何中的范围问题 在直线与圆锥曲线相交问题中,关于直线的斜率或纵截距的取值范围,关于圆锥曲线的离心率、长轴长(或实轴长)、短轴长(或虚轴长)等有关参量的取值范围,是解析几何高考命题以及备考复习的重点问题。对此,一般情况下的解题思路,首先寻觅出(或直接利用)相关的不等式,进而通过这一不等式的演变解出有关变量的取值范围。在这里,我们对寻觅所给问题中相关不等式的主要途径和策略作以研讨。一、“题设条件中的不等式关系”之运用事物都是一分为二的。对于题设条件中明朗或隐蔽的不等关系,既可作为推导或求解的条件而增加难度,也可作为探索或寻觅范围的切入点而提供方便。在解决范围问题时,不失时机的利用明显的不等关系或发掘隐匿的不等式,往往成为解题的关键环节.例1、已知双曲线中心在原点,右顶点为A(1,0),点P、Q在双曲线右支上 ,点M(m,0)到直线AP的距离为1.(1)若直线AP的斜率为k,且 ,求实数m的取值范围;(2)当 时,APQ的内心恰好是点M,求此双曲线方