第九章一元函数积分学多元函数积分学重积分曲线积分曲面积分重 积 分 三、二重积分的性质 第一节一、引例 二、二重积分的定义与可积性 四、曲顶柱体体积的计算 机动 目录 上页 下页 返回 结束 二重积分的概念与性质 第九章 解法: 类似定积分解决问题的思想:一、引例1.曲顶柱体的体积 给定曲顶柱体:底: xoy 面上的闭区域 D顶: 连续曲面侧面:以 D 的边界为准线 , 母线平行于 z 轴的柱面求其体积.“大化小, 常代变, 近似和, 求 极限” 机动 目录 上页 下页 返回 结束 1)“大化小”用任意曲线网分D为 n 个区域以它们为底把曲顶柱体分为 n 个2)“常代变”在每个3)“近似和”则中任取一点小曲顶柱体机动 目录 上页 下页 返回 结束 4)“取极限”令机动 目录 上页 下页 返回 结束 2. 平面薄片的质量 有一个平面薄片, 在 xoy 平面上占有区域 D ,计算该薄片的质量 M .度为设D 的面积为 ,则若 非常数 , 仍可用其面密 “大化小, 常代变,近似和, 求 极限” 解决.1)“大化小”用任意曲线网分D 为 n 个小区域相应把薄片也分为小区域 .机动 目录 上页