精选优质文档-倾情为你奉上5.6.证明:(1).如果是对称正定矩阵,则也是对称正定矩阵(2).如果是对称正定矩阵,则可以唯一地写成,其中是具有正对角元的下三角矩阵。证明:(1).因是对称正定矩阵,故其特征值皆大于,因此的特征值也皆大于。因此也皆大于,故是可逆的。又则也是对称正定矩阵。(2).由是对称正定,故它的所有顺序主子阵均不为零,从而有唯一的杜利特尔分解。又其中为对角矩阵,为上三角矩阵,于是由的对称性,得由分解的唯一性得从而由的对称正定性,如果设表示的各阶顺序主子式,则有,故因此,其中为对角元素为正的下三角矩阵。5.7.用列主元消去法解线性方程组并求出系数矩阵的行列式(即)的值。解所以解为,。5.9.用追赶法解三对角方程组,其中,。解 设有分解,由公式其中,分别是系数矩阵的主对角元素及其下边和上边的次对角线元素。具体计算,可得,。由,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。