精选优质文档-倾情为你奉上欧拉公式的证明方法和应用摘要:在复数域内用几种不同的方法证明欧拉公式,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。关键词:欧拉公式、微分中值定理、证明、应用、三角函数1.欧拉公式意义简说在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当时,有,即,这个等式将数学中的最富有特色的五个数0、1、i、e、联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头5,是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此+1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。2.欧拉公式的证明