推广第九章 一元函数微分学 多元函数微分学 注意: 善于类比, 区别异同多元函数微分法 及其应用 第九章 第一节一、区域二、多元函数的概念三、多元函数的极限四、多元函数的连续性机动 目录 上页 下页 返回 结束 多元函数的基本概念 一、 区域1. 邻域点集 称为点 P0 的邻域.例如,在平面上,(圆邻域)在空间中,(球邻域)说明:若不需要强调邻域半径 ,也可写成点 P0 的去心邻域记为机动 目录 上页 下页 返回 结束 在讨论实际问题中也常使用方邻域,平面上的方邻域为。因为方邻域与圆邻域可以互相包含.机动 目录 上页 下页 返回 结束 2. 区域(1) 内点、外点、边界点设有点集 E 及一点 P : 若存在点 P 的某邻域 U(P) E , 若存在点 P 的某邻域 U(P) E = , 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E则称 P 为 E 的内点;则称 P 为 E 的外点 ;则称 P 为 E 的边界点 .机动 目录 上页 下页 返回 结束 的外点 ,显然, E 的内点必属于 E , E 的外点必不属于 E , E 的边界点可能属于 E, 也可能不属于 E . (2