精选优质文档-倾情为你奉上时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。有时,拉氏变换还经常写为 (2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)上式为复变函数积分,积分围线为由到的闭曲线。二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。(1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49)且 (2-50)所以 (2-51)说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单