精选优质文档-倾情为你奉上坐标转换方法空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。图 5.7直角坐标系XYZ设表示第 j 轴的旋转角度,R j () 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。设图 5.7的坐标绕Z轴逆时针旋转角度,新坐标为X YZ,如图5.8所示:图 5.8 坐标绕Z 轴逆时针旋转角度由于坐标中的 z 分量不变,我们可以简化地在XY 平面进行分分析,如图5.9所示:图 5.9坐标绕Z 轴逆时针旋转 角度的XY 平面示