抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄里克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原理又称“狄里克雷原理”。抽屉原理有两个经典案例,一个是把10个苹果放进9 个抽屉里,总有一个抽屉里至少放了2个苹果,所以这个原理称作“抽屉原理”;另一个是6 只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”。1把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2 支铅笔。为什么呢?“总有”和“至少”是什么意思?“总有”就是说“一定有一个笔筒”。“至少”就是说“不少于2支,可能是2支,也可能多于2支”。我们可以摆一摆。00第一种: 我们可以摆一摆。0第二种: 我们可以摆一摆。0第三种: 我们可以摆一摆。第四种:0000 我发现一定有1个笔筒里有2支或多于2支铅笔。先放3支,在每个笔筒中放1支,剩下的1 支就要放进其中的一个笔筒。所以至少有一个笔筒中有2 支铅笔。还可以这样想:所以,只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2支铅笔。做一做1 5 只鸽子飞进了3 个鸽笼,总有一个鸽笼至少飞进了2 只鸽子。为什么?假如1个