引 言 在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次方程 时引进了复数。他发现这个方程没有根,并把这个方程的两个根形式地表为 。在当时,包括他自己在内,谁也弄不清这样表示有什么好处。事实上,复数被Cardano引入后,在很长一段时间内不被人们所理睬,并被认为是没有意义的,不能接受的“虚数”。直到十七与十八世纪,随着微积分的产生与发展,情况才有好转。特别是由于 L.Euler的研究结果,复数终于起了重要的作用。例如大家所熟知的Euler公式 揭示了复指数函数与三角函数之间的关系。然而一直到C.Wessel (挪威.1745-1818)和R.Argand(法国.1768-1822)将复数用平面向量或点来表示,以及K.F.Gauss (德国1777-1855)与W.R.Hamilton (爱尔兰1805-1865)定义复数 为一对有序实数后,才消除人们对复数真实性的长久疑虑,“复变函数”这一数学分支到此才顺利地得到建立和发展。 复变函数的 理论和方法在数学,自然科学和工程技术中有着广泛的应用,是解决诸如流体力学,电磁学,热学弹性理论中平面问题的有力工具。 复变