精选优质文档-倾情为你奉上第七部分、抛物线的切线问题1(08广东) 设,椭圆方程为=1,抛物线方程为如图6所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点,(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆的左右端点,试探究在抛物线上是否存在点,使为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)解:(1)由得,当得,G点的坐标为,过点G的切线方程为即,令得,点的坐标为,由椭圆方程得点的坐标为,即,即椭圆和抛物线的方程分别为和;(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,同理 以为直角的只有一个。若以为直角,设点坐标为,、两点的坐标分别为和, 。关于的二次方程有一大于零的解,有两解,即以为直角的有两个,因此抛物线上存在四个点使得为直角三角形。2已知动圆过定点,且与定直线相切.(I)求动圆圆心的轨迹C的方程;(II)若是轨迹C的动弦,且过, 分别以、为切点作轨迹C的切线,设两切线