第四章、随机变量的数字特征第一节:数学期望第二节:方差第三节:协方差及相关系数第四节:矩、协方差矩阵 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了. 然而,在实际问题中,概率分布一般是较难确定的. 而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了.例: 在评定某地区粮食产量的水平时,最关心的 是平均产量; 在检查一批棉花的质量时,既需要注意纤维的平均长度,又需要注意纤维长度与平均长度的偏离程度; 考察南宁市居民的家庭收入情况,我们既知 家庭的年平均收入,又要研究贫富之间的差异程度; 因此,在对随机变量的研究中,确定某些数字特征是重要的 .而所谓的数字特征就是用数字表示随机变量的分布特点。在这些数字特征中,最常用的是数学期望、方差、协方差和相关系数第一节 数学期望离散型随机变量的数学期望连续型随机变量的数学期望随机变量函数的数学期望数学期望的性质小结引例:某7 人的数学成绩为90 ,85 ,85 ,80 ,80 , 75 ,60 ,则他们的平均成绩为以频率为权重的加权平均 一、离散