数分高代定理大全(共24页).docx

上传人:晟*** 文档编号:10494668 上传时间:2022-01-16 格式:DOCX 页数:24 大小:1.24MB
下载 相关 举报
数分高代定理大全(共24页).docx_第1页
第1页 / 共24页
数分高代定理大全(共24页).docx_第2页
第2页 / 共24页
数分高代定理大全(共24页).docx_第3页
第3页 / 共24页
数分高代定理大全(共24页).docx_第4页
第4页 / 共24页
数分高代定理大全(共24页).docx_第5页
第5页 / 共24页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上数分高代定理大全高等代数第一章带余除法 对于中任意两个多项式与,其中,一定有中的多项式存在,使成立,其中或者,并且这样的是唯一决定的.定理 1 对于数域上的任意两个多项式,其中的充分必要条件是除的余式为零.定理 2 对于中任意两个多项式,在中存在一个最大公因式,且可以表示成,的一个组合,即有中多项式使.定理 3 中两个多项式,互素的充分必要条件是有中的多项式使.定理 4 如果,且,那么.定理 5 如果是不可约多项式,那么对于任意的两个多项式,由一定推出或者.因式分解及唯一性定理 数域上每一个次数的多项式都可以唯一地分解成数域上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式那么必有,并且适当排列因式的次序后有其中是一些非零常数.定理 6 如果不可约多项式是的重因式,那么它是微商的重因式.定理 7(余数定理) 用一次多项式去除多项式,所得的余式是一个常数,这个常数等于函数值.定理 8 中次多项式在数域中的根不可能多于个,重根按重数计算.定理 9 如果多项式,的次数都不超过,而

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。