精选优质文档-倾情为你奉上第十章 函数项级数习题课一、 主要内容1、基本概念函数列(函数项级数)的点收敛、一致收敛、内闭一致收敛、绝对收敛、和函数幂级数的收敛半径、收敛区间、收敛域2、一致收敛性A、 函数列一致收敛性的判断:(1)定义:用于处理已知极限函数的简单函数列的一致收敛性(2)Cauchy收敛准则:用于抽象、半抽象的函数列的一致收敛性的判断(3)确界(最大值方法):(4)估计方法:(5)Dini-定理:条件1)闭区间;2)连续性;3)关于的单调性注、除Cauchy收敛准则外,都需要知道极限函数,因此,在判断一致收敛性时,一般应先利用点收敛性计算出极限函数。注、定义法、确界方法和估计方法的本质是相同,定义方法通常处理抽象的对象,估计方法是确界方法的简化形式,估计方法处理较为简单的具体的对象,确界方法是通过确界的计算得到较为精确的估计,通常用于处理具有一般结构的具体的函数列,也可以用于非一致收敛性的判断。注、Dini定理中,要验证的关键条件是关于n的单调性,定理中相应的条件为“对任意固定的x,作为数列关于n