复变函数与积分变换复习重点.doc

上传人:h**** 文档编号:1097946 上传时间:2018-12-06 格式:DOC 页数:32 大小:1.67MB
下载 相关 举报
复变函数与积分变换复习重点.doc_第1页
第1页 / 共32页
复变函数与积分变换复习重点.doc_第2页
第2页 / 共32页
复变函数与积分变换复习重点.doc_第3页
第3页 / 共32页
复变函数与积分变换复习重点.doc_第4页
第4页 / 共32页
复变函数与积分变换复习重点.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、复变函数复习重点(一)复数的概念1.复数的概念: , 是实数, . . zxiyRe,Imxzyz21i注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模: ;2zxy2)幅角:在 时,矢量与 轴正向的夹角,记为 (多值0x Argz函数) ;主值 是位于 中的幅角。argz(,3) 与 之间的关系如下:arzctnyx当 ;0,xra当 ;,grctn,0,ayyzx4)三角表示: ,其中 ;注:中间一定是cosinzargz“+”号。5)指数表示: ,其中 。izearz(二) 复数的运算1.加减法:若 ,则1122,zxiyzxiy121212zxiy2.乘除法:1

2、)若 ,则1122,zxiyzxiy;2 1。121 1212122xiyizi xyxyi2)若 , 则121,iizez1; 1212ize121ize3.乘幂与方根1)若 ,则 。(cosin)izze(cosin)nnizze2)若 ,则i(有 个相异的值)122cossin(0,12)nkkz n(三)复变函数1复变函数: ,在几何上可以看作把 平面上的一wfz z个点集 变到 平面上的一个点集 的映射.DG2复初等函数1)指数函数: ,在 平面处处可导,处处解析;cosinzxeyz且 。zze注: 是以 为周期的周期函数。 (注意与实函数不同)z2i3、对数函数: (多值函数)

3、;ln(arg2)Lzizk(0,12)主值: 。 (单值函数)l的每一个主值分支 在除去原点及负实轴的 平面内处处Lnzlz z解析,且 ;1lz注:负复数也有对数存在。 (与实函数不同)3)乘幂与幂函数: ;(0)bLnae(0)bLnze注:在除去原点及负实轴的 平面内处处解析,且 。z1b4)三角函数: sincossin,cos,t,22ciiziizieezzgt在 平面内解析,且sin,cozzino,z2注:有界性 不再成立;(与实函数不同)sin1,cosz4、双曲函数 ;,22zzeehh奇函数, 是偶函数。 在 平面内解析,且shzcz,szc。,hs(四)解析函数的概念

4、1复变函数的导数1)点可导: = ;0fz00limzfzf2)区域可导: 在区域内点点可导。f2解析函数的概念1)点解析: 在 及其 的邻域内可导,称 在 点解析;fz00zfz02)区域解析: 在区域内每一点解析,称 在区域内解析;3)若 在 点不解析,称 为 的奇点;()fz00zf3解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函数;(五)函数可导与解析的充要条件1函数可导的充要条件: 在 可导,fzuxyivzxiy和 在 可微,且在 处满足 条件:,uxy,v,xy CR,此时, 有 。uvfzix2函数解析的充要条件: 在区

5、域内解析,fzuxyiv3和 在 在 内可微,且满足 条件:,uxy,v,xyDCR;,u此时 。vfzix注意 : 若 在区域 具有一阶连续偏导数,则,uxyvD在区域 内是可微的。因此在使用充要条件证明时,,uyvD只要能说明 具有一阶连续偏导且满足 条件时,函数CR一定是可导或解析的。()fziv3函数可导与解析的判别方法1)利用定义 (题目要求用定义,如第二章习题 1)2)利用充要条件 (函数以 形式给出,如第,fzuxyiv二章习题 2)3)利用可导或解析函数的四则运算定理。 (函数 是以 的形fz式给出,如第二章习题 3)(六)复变函数积分的概念与性质1 复变函数积分的概念: ,

6、是光滑曲线。1limnkckfzdfzc注:复变函数的积分实际是复平面上的线积分。2 复变函数积分的性质1) ( 与 的方向相反) ;1ccfzdfzd1c2) 是常数; ,ccgfzgzd43) 若曲线 由 与 连接而成,则 。c12 12cccfzdfzfzd3复变函数积分的一般计算法1)化为线积分: ;(常用于理论证明)cccfzduxvyixuy2)参数方法:设曲线 : ,其中 对应曲线 的起c()zttc点, 对应曲线 的终点,则 。 ()cfdzftzdt(七)关于复变函数积分的重要定理与结论1柯西古萨基本定理:设 在单连域 内解析, 为 内任fzBcB一闭曲线,则 0cfzdA2

7、复合闭路定理: 设 在多连域 内解析, 为 内任意一fDcD条简单闭曲线, 是 内的简单闭曲线,它们互不包含互12,n c不相交,并且以 为边界的区域全含于 内,则c 其中 与 均取正向;cfzdA1,kncfzdck ,其中 由 及 所组成的复合闭路。0f1(,2)n3闭路变形原理 : 一个在区域 内的解析函数 沿闭曲线Dfz的积分,不因 在 内作连续变形而改变它的值,只要在变形ccD过程中 不经过使 不解析的奇点。fz4解析函数沿非闭曲线的积分: 设 在单连域 内解析,fzB为 在 内的一个原函数,则GzfB212112(,)zdzGzB5说明:解析函数 沿非闭曲线的积分与积分路径无关,计

8、算fz时只要求出原函数即可。5。 柯西积分公式:设 在区域 内解析, 为 内任一正向简fzDcD单闭曲线, 的内部完全属于 , 为 内任意一点,则c0z002cfzdifzA6高阶导数公式:解析函数 的导数仍为解析函数,它的 阶fz n导数为0102(1,2)()!nncfzidfz A其中 为 的解析区域 内围绕 的任何一条正向简单闭曲线,cfzD0而且它的内部完全属于 。7重要结论:。 ( 是包含 的任意正向简单闭曲12,0()ncindzaAca线)8复变函数积分的计算方法1)若 在区域 内处处不解析,用一般积分法fzDcdtzdt2)设 在区域 内解析,fz 是 内一条正向简单闭曲线,

9、则由柯西古萨定理,cD0cfzdA 是 内的一条非闭曲线, 对应曲线 的起点和终点,则有12,zc212zcffdF3)设 在区域 内不解析D6 曲线 内仅有一个奇点: ( 在 内解c000102()!c nncfzdifzffzA()fzc析) 曲线 内有多于一个奇点: ( 内只有一个ccfzdA1kncfzdic奇点 )kz或: (留数基本定理)12Re(),nkkcfdzisfzA 若被积函数不能表示成 ,则须改用第五章留数定理来1()nofz计算。(八)解析函数与调和函数的关系1调和函数的概念:若二元实函数 在 内有二阶连续偏导(,)xyD数且满足 ,20xy为 内的调和函数。(,)x

10、yD2解析函数与调和函数的关系 解析函数 的实部 与虚部 都是调和函数,并称虚部fzuivuv为实部 的共轭调和函数。v 两个调和函数 与 构成的函数 不一定是解析函数;v()fzuiv但是若 如果满足柯西,uv黎曼方程,则 一定是解析函数。iv3已知解析函数 的实部或虚部,求解析函数 的方fz fzuiv法。1)偏微分法:若已知实部 ,利用 条件,得,uxyCR7;,vxy对 两边积分,得 (*)uxuvdygx再对(*)式两边对 求偏导,得 (*) x vudygx由 条件, ,得 ,可求出 CRuvyuyx;gx代入(*)式,可求得 虚部 。 uvdygx2)线积分法:若已知实部 ,利用

11、 条件可得,uxyCR,vudxdyxdy故虚部为 ;0,xyc由于该积分与路径无关,可选取简单路径(如折线)计算它,其中 与 是解析区域中的两点。0,xy,3)不定积分法:若已知实部 ,根据解析函数的导数公式,uxy和 条件得知,CRvfziixy将此式右端表示成 的函数 ,由于 仍为解析函数,故Uzfz( 为实常数)fzdcc注:若已知虚部 也可用类似方法求出实部v .u(九)复数项级数1复数列的极限1)复数列 ( )收敛于复数 的充要条件nnaib1,2 abi8为(同时成立)lim,linnab2)复数列 收敛 实数列 同时收敛。n,2复数项级数1)复数项级数 收敛的充要条件是级数 与

12、 同0()nnaib0na0nb时收敛;2)级数收敛的必要条件是 。lim0n注:复数项级数的敛散性可以归纳为两个实数项级数的敛散性问题的讨论。(十)幂级数的敛散性1幂级数的概念:表达式 或 为幂级数。00()nncz0ncz2幂级数的敛散性1)幂级数的收敛定理阿贝尔定理(Abel):如果幂级数 在0ncz处收敛,那么对满足 的一切 ,该级数绝对收敛;0z0zz如果在 处发散,那么对满足 的一切 ,级数必发散。0 2)幂级数的收敛域圆域幂级数在收敛圆域内,绝对收敛;在圆域外,发散;在收敛圆的圆周上可能收敛;也可能发散。3)收敛半径的求法:收敛圆的半径称收敛半径。 比值法 如果 ,则收敛半径 ;

13、1lim0nc1R 根值法 ,则收敛半径 ;lin9 如果 ,则 ;说明在整个复平面上处处收敛;0R如果 ,则 ;说明仅在 或 点收敛;00z注:若幂级数有缺项时,不能直接套用公式求收敛半径。 (如)20ncz3幂级数的性质1)代数性质:设 的收敛半径分别为 与 ,记00,nnazb1R2,12min,R则当 时,有z(线性运算)000()nnnnabazbz(乘积运算)01000()()()nn nnz a2)复合性质:设当 时, ,当 时, 解析r0nfzRgz且 ,gzr则当 时, 。R0nnfgzagz3) 分析运算性质:设幂级数 的收敛半径为 ,则0n 0R 其和函数 是收敛圆内的解析函数;0nfza 在收敛圆内可逐项求导,收敛半径不变;且 10nfzazzR 在收敛圆内可逐项求积,收敛半径不变; 100z nnafdz

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。