精选优质文档-倾情为你奉上3 牛顿迭代法Newton Iteration切线法 牛顿迭代法是最著名的方程求根方法。已经通过各种方式把它推广到解其他更为困难的非线性问题。【例如】非线性方程组、非线性积分方程和非线性微分方程。虽然牛顿法对于给定的问题不一定总是最好的方法,但它的简单形式和快的收敛速度常常使得解非线性问题的人优先考虑它。迭代一般理论告诉我们,构造好的迭代函数可使收敛速度提高。然而迭代函数的构造方法又各不相同,方法多样。牛顿法是受几何直观启发,给出构造迭代函数的一条重要途径。牛顿迭代的基本思想:方程f(x)=0的根,几何意义是曲线y=f(x)与ox轴y=0的交点。求曲线与y=0的交点没有普遍的公式,但直接与0x轴的交点容易计算。用直线近似曲线y=f(x),从而用直线方程的根逐步代替f(x)=0的根。即把非线性方程逐步线性化。方法:设xk是f(x)=0的一个近似根,把f(x)在xk处作一阶Taylor展开,得到 (19)设0,由于所以求得解记为,有牛顿迭代公式: