精选优质文档-倾情为你奉上 数学在经济生活中的应用例1设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润 解:总成本函数为C(x)=x0(100+2t)dt+C(0)=100x+x 2+1000 总收益函数为R(x)=500x总利润L(x)=R(x)-C(x)=400x-x2-1000,L=400-2x,令L=0,得x=200,因为L(200)0。所以,生产量为200单位时,利润最大。最大利润为L(200)=400200-2002-1000=(元)例2某企业每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。 解:每月生产Q吨产品的总收入函数为: R(Q)=20Q L(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20) =-Q2+30Q