李雅普诺夫函数 李雅普诺夫函数 李雅普诺夫函数(Lyapunov function)是用来证明一动力系统或自治微分方程稳定性的函数。其名称来自俄罗斯数学家亚历山大李雅普诺夫(Aleksandr Mikhailovich Lyapunov)。李雅普诺夫函数在稳定性理论及控制理论中相当重要。 若一函数可能可以证明系统在某平衡点的稳定性,此函数称为 李雅普诺夫候选函数(Lyapunov-candidate-function)。不过目前还找不到一般性的方式可建构(或找到)一个系统的李雅普诺夫候选函数,而找不到李雅普诺夫函数也不代表此系统不稳定。在动态系统中,有时会利用守恒律来建构李雅普诺夫候选函数。 针对自治系统的李雅普诺夫定理,直接使用李雅普诺夫候选函数的特性。在寻找一个系统平衡点附近的稳定性时,此定理是很有效的工具。不过此定理只是一个证明平衡点稳定性的充分条件,不是必要条件。而寻找李雅普诺夫函数也需要碰运气,通常会用试误法(trial and error)来寻找李雅普诺夫函数。 目录 隐藏 1 李雅普诺夫候选函数的定义