精选优质文档-倾情为你奉上运用导数解决含参函数问题的策略【专题名称】【专 题 号】G312【复印期号】2010年07期【原文出处】(南宁)2010年2期第4041页【作者简介】梁小金,广西钦州市第一中学()。【关 键 词】以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。解决的主要途径是将含参数不等式的存在性或恒成立问题根据其不等式的结构特征,恰当地构造函数,等价转化为含参函数的最值讨论。历年高考试题中也常出现此类问题,且涉及的知识面广,综合性强,不少考生在处理这类问题时,不知道确定参数范围的函数关系或不等关系从何而来。本文通过一些实例介绍这类问题相应的解法,期望对考生的备考有所帮助。一、含参函数中的存在性问题利用题设条