精选优质文档-倾情为你奉上情形一:积分区域关于坐标轴对称定理4 设二元函数在平面区域连续,且关于轴对称,则1)当(即是关于的奇函数)时,有 .2)当(即是关于的偶函数)时,有 . 其中是由轴分割所得到的一半区域。例5 计算,其中为由与围成的区域。解:如图所示,积分区域关于轴对称,且即是关于的奇函数,由定理1有.类似地,有:定理5 设二元函数在平面区域连续,且关于轴对称,则其中是由轴分割所得到的一半区域。例6 计算其中为由所围。解:如图所示,关于轴对称,并且,即被积分函数是关于轴的偶函数,由对称性定理结论有:.定理6 设二元函数在平面区域连续,且关于轴和轴都对称,则(1)当或时,有 .(2)当时,有其中为由轴和轴分割所的到的1/4区域。9例7 计算二重积分,其中: .解:如图所示,关于轴和轴均对称,且被积分函数关于和是偶函数,即有,由定理2,得其中是的第一象限部分,由对称性知,,故.情形二、积分区
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。