精选优质文档-倾情为你奉上倒立摆系统模型研究控制系统的数学模型是描述系统内部物理量或变量之间关系的数学表达式。在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程称为静态数学模型;而描述变量各阶导数之间关系的微分方程称为动态数学模型。如果已知输入量及变量的初始条件,对微分方程求解,则可以得到系统输出量的表达式,并由此对系统进行性能分析。因此,建立控制系统的数学模型是进行控制系统分析和设计的首要工作。系统建模可以分为两种方式:实验建模和机理建模。实验建模是通过在研究对象上加入各种由研究者事先确定的输入信号,激励研究对象,并通过传感器检测其可观测的输出,应用系统辩识的手法分析输入-输出关系,建立适当的数学模型逼近实际系统。机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统的运动方程。对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难,故而选用机理建模的方法。为了在数学上推导和分析的方便,可作出如下假设:1) 摆杆在运动中是不变形的刚体;2) 齿型带与轮之间无相对滑动,齿型带无拉长现象;3) 各种