1、 初中中考数学二次函数总复习教案 任启 2014.4.16 - 1 -文博学校中考数学函数知识点一次函数与反比例函数考点一、平面直角坐标系 (3 分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点 O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点,不属于任何象限。2
2、、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时, (a,b)和(b,a)是两个不同点的坐标。考点二、不同位置的点的坐标的特征 (3 分)1、各象限内点的坐标的特征点 P(x,y)在第一象限 0,yx点 P(x,y)在第二象限 点 P(x,y)在第三象限 ,点 P(x,y)在第四象限 yx2、坐标轴上的点的特征点 P(x,y)在 x 轴上 , x 为任意实数0点 P(x,y)在 y 轴上 ,y 为任意实数点 P(x,y)既在 x 轴上,又在 y 轴上 x,y 同时为零,即点 P 坐标为(0
3、,0)3、两条坐标轴夹角平分线上点的坐标的特征点 P(x,y)在第一、三象限夹角平分线上 x 与 y 相等点 P(x,y)在第二、四象限夹角平分线上 x 与 y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。5、关于 x 轴、y 轴或远点对称的点的坐标的特征点 P 与点 p关于 x 轴对称 横坐标相等,纵坐标互为相反数初中中考数学二次函数总复习教案 任启 2014.4.16 - 2 -文博学校点 P 与点 p关于 y 轴对称 纵坐标相等,横坐标互为相反数点 P 与点 p关于原点对称 横、纵坐标均互为相
4、反数6、点到坐标轴及原点的距离点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x 轴的距离等于 y(2)点 P(x,y)到 y 轴的距离等于 x(3)点 P(x,y)到原点的距离等于 2考点三、函数及其相关概念 (38 分)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量 x 与 y,如果对于 x 的每一个值,y 都有唯一确定的值与它对应,那么就说 x 是自变量,y 是 x 的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3
5、、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量 x 的一系列值和函数 y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。考点四、正比例函数和一次函数 (310 分)1、正比例函数和一次函数的概念一般地,如果 (k,b 是常
6、数,k 0) ,那么 y 叫做 x 的一次函数。xy特别地,当一次函数 中的 b 为 0 时, (k 为常数,k 0) 。这时,y 叫做 x 的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数 的图像是经过点(0,b)的直线;kxy正比例函数 的图像是经过原点(0,0)的直线。kxyk 的符号 b 的符号 函数图像 图像特征k0 b0 y 图像经过一、二、三象限,y 随 x初中中考数学二次函数总复习教案 任启 2014.4.16 - 3 -文博学校0 x的增大而增大。b0y0 x图像经过一、二、四象限,y 随 x的增大而减小K0 时,
7、图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时,y 随 x 的增大而增大(2)当 k0 k0 时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随 x 的增大而减小。x 的取值范围是 x 0,y 的取值范围是 y 0;当 k0 a时,y 随 x 的增大而增大,简记左减ab2右增;(4)抛物线有最低点,当 x= 时,y 有最ab2小值, cy4最 小 值 (1)抛物线开口向下,并向下无限延伸;(2)对称轴是 x= ,顶点坐标是ab2( , ) ;c4(3)在对称轴的左侧,即当 x 时,y 随 x 的增大而减小,简ab2记左增右减;(4)抛物线有最高点,当 x= 时,y
8、 有最ab2大值, cy4最 大 值2、二次函数 中, 的含义: 表示开口方向:)0,(2 abax是 常 数 , b、 a0 时,抛物线开口向上, , , 0 时,图像与 x 轴有两个交点;当 =0 时,图像与 x 轴有一个交点;当 0 时,图像与 x 轴没有交点 1.定义:一般地,如果 是常数, ,那么cbaxy,(2)0a叫做 的二次函数.y2.二次函数 的性质2a(1)抛物线 的顶点是坐标原点,对称轴是 轴.xy y(2)函数 的图像与 的符号关系.2当 时 抛物线开口向上 顶点为其最低点;0a当 时 抛物线开口向下 顶点为其最高点.(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形
9、式为 .y2axy)( 03.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.cbxay24.二次函数 用配方法可化成: 的形式,其中khxay2.ackh422,5.二次函数由特殊到一般,可分为以下几种形式: ; ; ;2axykxy22hxay; .khxay2 cbxy26.抛物线的三要素:开口方向、对称轴、顶点. 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;0a0a相等,抛物线的开口大小、形状相同.a平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .yhxyx7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开
10、a口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法: ,顶点abcxcbxy4222 是 ,对称轴是直线),( abc422 .a初中中考数学二次函数总复习教案 任启 2014.4.16 - 8 -文博学校(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),khxay2 hk对称轴是直线 .hx(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线 中, 的作用cbxay2a
11、,(1) 决定开口方向及开口大小,这与 中的 完全一样.2axy(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线cbxay2,故: 时,对称轴为 轴; (即 、 同号)时,对称轴在 轴左侧;abx00y (即 、 异号)时,对称轴在 轴右侧.0y(3) 的大小决定抛物线 与 轴交点的位置.ccbxay2当 时, ,抛物线 与 轴有且只有一个交点(0, ):xc2yc ,抛物线经过原点; ,与 轴交于正半轴; ,与 轴交于负半轴.0c0ccy以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .0ab10.几种特殊的二次函数的图像特征如下:函数解析式 开口方
12、向 对称轴 顶点坐标2axy( 轴)0xy(0,0)k( 轴) (0, )k2hxy当 时0a开口向上hx( ,0)h初中中考数学二次函数总复习教案 任启 2014.4.16 - 9 -文博学校khxay2 hx( , )hkcb当 时0a开口向下 ab2( )abc422,11.用待定系数法求二次函数的解析式(1)一般式: .已知图像上三点或三对 、 的值,通常选择一般式.cbxay2 xy(2)顶点式: .已知图像的顶点或对称轴,通常选择顶点式.kh(3)交点式:已知图像与 轴的交点坐标 、 ,通常选用交点式: .x1x2 21xay12.直线与抛物线的交点(1) 轴与抛物线 得交点为(0
13、, ).ycbay2c(2)与 轴平行的直线 与抛物线 有且只有一个交点( , ).hxbxay2 hcba2(3)抛物线与 轴的交点二次函数 的图像与 轴的两个交点的横坐标 、 ,是对应一元二次方程cbay2 1x2的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别02cxx式判定:有两个交点 抛物线与 轴相交;有一个交点(顶点在 轴上) 抛物线与 轴相切;x0x没有交点 抛物线与 轴相离.0(4)平行于 轴的直线与抛物线的交点x同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是 的两个实数根.kkcb
14、xa(5)一次函数 的图像 与二次函数 的图像 的交点,由方nxyl 02acbxyG程组 的解的数目来确定:方程组有两组不同的解时 与 有两个交点; cbak2 l方程组只有一组解时 与 只有一个交点;方程组无解时 与 没有交点.lGl(6)抛物线与 轴两交点之间的距离:若抛物线 与 轴两交点为 ,x cbxay2 021, xBA由于 、 是方程 的两个根,故1202cbxa初中中考数学二次函数总复习教案 任启 2014.4.16 - 10 -文博学校acxbx2121, acbacbxxAB 442221212121补充:1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻
15、求解题方法)y如图:点 A 坐标为(x 1,y 1)点 B 坐标为(x 2,y 2)则 AB 间的距离,即线段 AB 的长度为 A211y0 xB2、函数平移规律(中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间) 3、直线斜率: b为直线在y轴上的截距12tanxyk4、直线方程: 一般两点斜截距 1,一般 一般 直线方程 ax+by+c=0 2,两点 由直线上两点确定的直线的两点式方程,简称两点式:)(1121 xxyy3,点斜 知道一点与斜率 )(11xky4,斜截 斜截式方程,简称斜截式: ykx b(k0)5 ,截距 由直线在 轴和 轴上的截距确定的直线的截距xy式方程,简称截距式:1ba5、设两条直线分别为, : : 1l1ykx2l2ykx若 ,则有 且 。 2/ 1/12b