1、第 1 页(共 84 页)2019 年重点 中学九年级(上)期末数学试卷两套汇编十四 (答案解析版)九年级(上)期末数学试卷一、选择题(本大题共 15 个小题,每小题 3 分,共 45 分在每小题给出的四个选项中,只有一项是符合题目要求的)1圆有( )条对称轴A0 条 B1 条 C2 条 D无数条2抛物线 y=(x1) 2+2 的顶点坐标是( )A ( 1,2) B (1,2) C (1, 2) D (1,2)3如图所示正三棱柱的主视图是( )A B C D4圆 O 的半径为 6,线段 OP 的长度为 8,则点 P 与圆的位置关系是( )A点在圆上 B点在圆外 C点在圆内 D无法确定5如图,A
2、BC 的三个顶点都在正方形网格的格点上,则 tanA 的值为( )第 2 页(共 84 页)A B C D6要将抛物线 y=(x+1) 2+2 平移后得到抛物线 y=x2,下列平移方法正确的是( )A向左平移 1 个单位,再向上平移 2 个单位B向左平移 1 个单位,再向下平移 2 个单位C向右平移 1 个单位,再向上平移 2 个单位D向右平移 1 个单位,再向下平移 2 个单位7如图,晚上小亮在路灯下散步,在小亮由 A 处走到 B 处这一过程中,他在地上的影子( )A逐渐变短 B逐渐变长 C先变短后变长 D先变长后变短8如图,菱形 ABCD 的周长为 16,ABC=120,则 DB 的长为(
3、 )第 3 页(共 84 页)A B4 C D29已知矩形的面积为 10,长和宽分别为 x 和 y,则 y 关于 x 的函数图象大致是( )A B C D10如图,已知直线 abc,直线 m,n 与 a,b,c 分别交于点A,C,E,B, D,F,若 AC=4,AE=10 ,BD=3 ,则 DF 的值是( )A4 B4.5 C5 D5.511已知抛物线 y=3(x2 ) 2+k(k 为常数) ,A( 3,y 1) ,B(3,y 2) ,C( 4,y 3)是抛物线上三点,则 y1,y 2,y 3 由小到大依序排列为( )Ay 1y 2y 3 By 2y 1y 3 Cy 2y 3y 1 Dy 3y
4、 2y 112如图,二次函数 y1=ax2+bx+c 与一次函数 y2=kx+b 的交点 A,B 的坐标分别为(1,3) , (6,1) ,当 y1y 2 时,x 的取值范围是( )第 4 页(共 84 页)A1 x6 Bx1 或 x6 C 3x 1 Dx3 或 x113二次函数 y=ax2+bx+c 的图象如图所示,则反比例函数 与一次函数y=bx+c 在同一坐标系中的大致图象是( )A B C D14如图,在 x 轴的上方,直角BOA 绕原点 O 按顺时针方向旋转,若BOA的两边分别与函数 y= 、y= 的图象交于 B、A 两点,则OAB 的大小的变化趋势为( )第 5 页(共 84 页)
5、A逐渐变小 B逐渐变大 C时大时小 D保持不变15抛物线 y=ax2+bx+c 交 x 轴于 A(1,0) ,B (3,0) ,交 y 轴的负半轴于 C,顶点为 D下列结论:2a+b=0;2c3b;当 m1 时,a +bam 2+bm;当ABD 是等腰直角三角形时,则 a= ;当ABC 是等腰三角形时,a 的值有 3 个其中正确的有( )A B C D二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分把答案填在题中横线上)16已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3) ,则另一个交点坐标是 17在ABC 中,若 AB=AC=5,BC=8 ,则 sinB= 1
6、8如图,点 O 是O 的圆心,点 A、B 、C 在O 上,AOB=42,则ACB的度数是 第 6 页(共 84 页)19如图,利用标杆 BE 测量建筑物 DC 的高度,如果标杆 BE 长为 1.5 米,测得AB=2 米,BC=8 米,且点 A、E 、D 在一条直线上,则楼高 CD 是 米20已知二次函数 y=x2+2x+m 的部分图象如图所示,则关于 x 的一元二次方程x2+2x+m=0 的解为 21如图,抛物线 y=x2 在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为 A1,A 2,A 3,A n,将抛物线 y=x2 沿直线 L:y=x 向上平移,得一系列抛物线,且满足下列条件
7、:抛物线的顶点 M1,M 2,M 3,M n,都在直线 L:y=x 上;抛物线依次经过点 A1,A 2,A 3An,则 M2016 顶点的坐标为 第 7 页(共 84 页)三、解答题(本大题共 7 个小题,共 57 分解答应写出文字说明、证明过程或演算步骤)22 (1)计算: sin45+3tan30 ;(2)解方程:x 26x+4=023有四张背面相同的纸牌 A、B 、C、D正面分别画有四个不同的几何图形(如图所示) ,小亮将这四张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张(1)用树状图或列表法表示两次摸牌的所有可能的结果(纸牌用 A、B、C、D表示) ;(2)求摸出的两次牌正面图形都
8、是中心对称图形的概率24 (1)如图,在矩形 ABCD 中,BF=CE,求证:AE=DF;(2)如图,在圆内接四边形 ABCD 中,O 为圆心,BOD=160 ,求BCD 的度第 8 页(共 84 页)数25放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝如图,他在 A 处不小心让风筝挂在了一棵树梢上,风筝固定在了 D 处,此时风筝 AD 与水平线的夹角为 30,为了便于观察,小明迅速向前边移动,收线到达了离 A 处 10 米的 B 处,此时风筝线 BD 与水平线的夹角为 45已知点A,B ,C 在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线 AD,
9、BD 均为线段, 1.414 , 1.732 ,最后结果精确到1 米) 26教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升 10,加热到 100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系直至水温降至 20,饮水机关机饮水机关机后即刻自动开机,重复上述自动程序如图为在水温为 20时,接通电源后,水温y()和时间 x(min)的关系(1)求饮水机接通电源到下一次开机的间隔时间(2)在(1)中的时间段内,要想喝到超过 50的水,有多长时间?第 9 页(共 84 页)27一个批发商销售成本为 20 元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过
10、90 元,在销售过程中发现的售量 y(千克)与售价 x(元/千克)满足一次函数关系,对应关系如下表:售价 x(元/ 千克) 50 60 70 80 销售量 y(千克) 100 90 80 70 (1)求 y 与 x 的函数关系式;(2)该批发商若想获得 4000 元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润 w(元)最大?此时的最大利润为多少元?28如图,在平面直角坐标系 xOy 中,直线 y= x+2 与 x 轴交于点 A,与 y 轴交于点 C抛物线 y=ax2+bx+c 的对称轴是 x= 且经过 A、C 两点,与 x 轴的另一交点为点 B(1)直接写出点
11、 B 的坐标; 求抛物线解析式(2)若点 P 为直线 AC 上方的抛物线上的一点,连接 PA,PC 求PAC 的面积的最大值,并求出此时点 P 的坐标(3)抛物线上是否存在点 M,过点 M 作 MN 垂直 x 轴于点 N,使得以点A、M 、N 为顶点的三角形与ABC 相似?若存在,求出点 M 的坐标;若不存在,请说明理由第 10 页(共 84 页)参考答案与试题解析一、选择题(本大题共 15 个小题,每小题 3 分,共 45 分在每小题给出的四个选项中,只有一项是符合题目要求的)1圆有( )条对称轴A0 条 B1 条 C2 条 D无数条【考点】圆的认识【分析】紧扣圆的对称轴的特点,即可解决问题【解答】解:圆的对称轴是经过圆心的直线,经过一点的直线有无数条,所以,圆有无数条对称轴故选:D2抛物线 y=(x1) 2+2 的顶点坐标是( )A ( 1,2) B (1,2) C (1, 2) D (1,2)【考点】二次函数的性质【分析】直接利用顶点式的特点可写出顶点坐标