结构设计原理复习资料crl.doc

上传人:h**** 文档编号:121601 上传时间:2018-07-08 格式:DOC 页数:19 大小:265KB
下载 相关 举报
结构设计原理复习资料crl.doc_第1页
第1页 / 共19页
结构设计原理复习资料crl.doc_第2页
第2页 / 共19页
结构设计原理复习资料crl.doc_第3页
第3页 / 共19页
结构设计原理复习资料crl.doc_第4页
第4页 / 共19页
结构设计原理复习资料crl.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、 1 结构设计原理复习资料 第一篇 钢筋混凝土结构 第一章 钢筋混凝土结构的基本概念及材料的物理力学性能 一、学习目的 本章介绍了钢筋混凝土的基本概念,分别从强度、变形等方面阐述了组成钢筋混凝土材料的混凝土和钢筋的特性,并对钢筋与混凝土共同作用机理作了简要说明。学习本章的目的是使读者认识并熟悉钢筋混凝土材料,了解它们的工作性能,能在工作中正确的使用它们。 本课程的主要内容取材于我国现行的公路桥涵设计通用规范( JTJ D60-2004)、公路圬工桥涵设计规范( JTG D61-2005)、公路钢筋混 凝土及预应力混凝土桥涵设计规范( JTG D62-2004) 、公路桥涵钢结构和木结构设计规范

2、( JTJ 025-86) 。 习惯上将上述设计规范统称为公路桥规。 二 、学习重点 在本章的学习中应注意以下几个方面的问题:( 1)混凝土的强度指标有哪些,以及获得它们的方法;( 2)混凝土的应力应变关系曲线,弹性模量的取值方法;( 3)混凝土收缩、徐变的概念及特性;( 4)两类钢材的变形及强度特征;( 5)锚固长度的意义;( 6)钢筋混凝土结构对混凝土与钢筋的基本要求。 三 、复习题 (一)填空题 1、 在钢筋混凝土构件中钢筋的作用是 替混凝土受拉 或 协助混凝土受压 。 2、 混凝土的强度指标有 混凝土的立方体强度 、 混凝土轴心抗压强度 和 混凝土抗拉强度 。 3、 混凝土的变形可分为

3、两类: 受力变形 和 体积变形 。 4、 钢筋混凝土结构使用的钢筋,不仅要 强度高 ,而且要具有良好的 塑性 、 可焊性 ,同时还要求与混凝土有较好的 粘结性能 。 5、 影响钢筋与混凝土之间粘结强度的因素很多,其中主要为 混凝土强度 、 浇筑位置 、 保护层厚度 及 钢筋净间距 。 6、钢筋和混凝土这两种力学性能不同的材料能够有 效地结合在一起共同工作,其主要原因是: 钢筋和混凝土之间具有良好的 粘结力 、 钢筋和混凝土的温度线膨胀系数接近 和 混凝土对钢筋起保护作用 。 7、混凝土的变形可分为混凝土的 受力变形 和混凝土的 体积变形 。 其中混凝土的徐变属于混凝土的 受力 变形,混凝土的收

4、缩和膨胀属于混凝土的 体积 变形。 (二)判断题 1、 素混凝土的承载能力是由混凝土的抗压强度控制的。 【】 2、 混凝土强度愈高,应力应变曲线下降愈剧烈,延性就愈好。 【】 3、 线性徐变在加荷初期增长很快,一般 在两年左右趋以稳定,三年左右徐变即告基本终止。 【】 4、 水泥的用量愈多,水灰比较大,收缩就越小。 【】 2 5、 钢筋中含碳量愈高,钢筋的强度愈高,但钢筋的塑性和可焊性就愈差。 【】 (三)名词解释 1、 混凝土的立方体强度 我国公路桥规规定以每边边长为 150mm 的立方体试件,在 20 2的温度和相对湿度在 90%以上的潮湿空气中养护 28 天,依照标准制作方法和试验方法测

5、得的抗压极限强度值(以 MPa 计)作为混凝土的立方体抗压强度,用符号 cuf 表示。 2、 混凝土的徐变 在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为混凝土的 徐变。 3、 混凝土的收缩 混凝土在空气中结硬时体积减小的现象称为混凝土的收缩。 (四)简答题 1、 简述混凝土应力应变曲线的三个阶段? 答: 在上升段,当应力小于 0.3 倍的棱柱体强度时,应力应变关系接近直线变化,混凝土处于弹性工作阶段。在应力大于等于 0.3 倍的棱柱体强度 后,随着应力增大,应力应变关系愈来愈偏离直线,任一点的应变可分为弹性应变和塑性应变两部

6、分。原有的混凝土内部微裂缝发展,并在孔隙等薄弱处产生新的个别的微裂缝。当应力达到 0.8 倍的棱柱体强度后,混凝土塑性变形显著增大,内部微裂缝不断延伸扩展,并有几条贯通,应力应变曲线斜率急剧减小。当应力达到棱柱体强度时,应力应变曲线的斜率已接近于水平,试件表面出现不连续的常见裂缝。 在下降段,到达峰值应力后,混凝土的强度并不完全消失,随着应力的减少,应变仍然增加,曲线下降坡度较陡,混凝土表面裂缝逐渐贯通。 在收敛段,在反弯点之 后,应力下降的速度减慢,趋向于稳定的残余应力。表面纵向裂缝把混凝土 棱柱体分成若干个小柱,荷载由裂缝处的摩擦咬合力及小柱体的残余强度所承受。 2、 简述混凝土发生徐变的

7、原因? 答: 在长期荷载作用下,混凝土凝胶体中的水份逐渐压出,水泥石逐渐粘性流动,微细空隙逐渐闭合,细晶体内部逐渐滑动,微细裂缝逐渐发生等各种因素的综合结果。 第二章 结构按极限状态法设计计算的原则 一、学习目的 本章主要介绍了关于公路桥规的计算原则,即承载 能力极限状态和正常使用极限状态计算原则,这是公路桥涵设计的基本准则。 计算理论发展阶段 :以弹性理论为基础的容许应力计算法 考虑钢筋混凝土塑性性能的破坏阶段计算法 半经验、半概率的“三系数”极限状态设计法(荷载系数、材料系数、工作条件系数) 以结构可靠性理论为基础的概率极限状态设计法(又分为三个水准:水准半概率设计法,水准近似概率设计方法

8、,水准全概率设计法)。 公路桥规 采用的是 以结构可靠性理论为基础的 近似 概率极限状态设计法 ,其概率反映在荷载组合与材料取值等方面。学习本章的目的是为了使读者了解设计规范的要求及原则。 二 、学习重点 本章的学习重点为设计方法的演变 过程,从容许应力法到考虑塑性性能的破坏阶段计算方法到极限状态法;两类极限状态的基本含义;材料强度取值的方法,特别注意个类强度的区别与联系;结合 公路桥规 了解荷载分类及荷载组合的形式。 三 、复习题 (一)填空题 3 1、结构设计的目的,就是要使所设计的结构,在规定的时间内能够在具有足够 可靠性 性的前提下,完成 全部功能 的要求。 2、结构能够满足各项功能要

9、求而良好地工作,称为结构 可靠 ,反之则称为 失效 ,结构工作状态是处于可靠还是失效的标志用 极限状态 来衡量。 3、国际上一般将结构的极限 状态分为三类: 承载能力极限状态 、 正常使用极限状态 和 “ 破坏一安全 ” 极限状态 。 4、正常使用极限状态的计算,是以弹性理论或塑性理论为基础,主要进行以下三个方面的验算: 应力计算 、 裂缝宽度验算 和 变形验算 。 5、公路桥涵设计中所采用的荷载有如下几类: 永久荷载 、 可变荷载 和 偶然荷载 。 6、结构的 安全性 、 适用性 和 耐久性 通称为结构的可靠性。 7、作用是指使结构产生内力、变形、应力和应变的所有原因,它分为 直接 作用和

10、间接 作用两种。 直接作用 是指施加在结构上的集中力或分布力 如汽车、人群、结构自重等, 间接作用 是指引起结构外加变形和约束变形的原因,如地震、基础不均匀沉降、混凝土收缩、温度变化等。 8、结构上的作用按其随时间的变异性和出现的可能性分为三类: 永久作用(恒载) 、可变作用 和 偶然作用 。 9、我国公路桥规根据桥梁在施工和使用过程中面临的不同情况,规定了结构设计的三种状况: 持久 状况、 短暂 状况和 偶然 状况。 10、公路桥规根据混凝土立方体抗压强度标准值进行了强度等级的划分,称为混凝土强度等级并冠以符号 C 来表示,规定公路桥梁受力构件的混凝土强度等级有 13 级,即 C20C80,

11、中间以 5MPa 进级。 C50 以下为普通强度混凝土, C50 及以上混凝土为高强度混凝土。公路桥规规定受力构件的混凝土强度等级应按下列规定采用:钢筋混凝土构件不应低于C20 ,用 HRB400、 KL400 级钢筋配筋时,不应低于 C25 ;预应力混凝土构件不应低于 C40 。 11、结构或结构构件设计时,针对不同设计目的所采用的各种作用规定值即称为作用代表值。作用代表值包括作用 标准值 、 准永久值 和 频遇值 。 (二)名词解释 1、结构的可靠度 结构在规定的时间内,在规定的条件下 ,完成预定功能的概率。 2、 结构的 极限状态 当整个结构或结构的一部分超过某一特定状态而不能满足设计规

12、定的某一功能要求时,则此特定状态称为该功能的极限状态。 第三章 受弯构件正截面承载力计算 一、学习重点 受弯构件正截面承载力计算是全书的重点之一。 首先必须掌握 受弯构件正截面 三个工作阶段各自的特点,以及不同配筋条件下的破坏形态,弄清 max 、 min 的力学意义。 单筋矩形、双筋矩形、 T 形截面 正截面承载力计算 都应以掌握计 算图式为重点,三者的基本计算公式、区别与联系均表现在计算图式中。计算方法上应以灵活运用基本公式为前提,同时注意基本公式的适用条件。 构造与计算同等重要,必须结合例题与习题掌握梁(板)构造的一些基本内容,如配筋原则、净保护层、最小净距等概念。 二、复习题 (一)填

13、空题 4 1、钢筋混凝土 受弯构件 常用的截面型式有 矩形 、 T 形 和 箱形 等。 2、只在梁(板)的受拉区配置纵向受拉钢筋,此种构件称为 单筋受弯构件 ;如果同时在截面受压区也配置受力钢筋,则此种构件称为 双筋受弯构件 。 3、梁内的钢筋 有 纵向受拉钢筋(主钢筋) 、 弯起钢筋 或 斜钢筋 、 箍筋 、 架立钢筋 和 水平纵向钢筋 等 。 4、梁内的钢筋常常采用骨架形式,一般分为 绑扎钢筋骨架 和 焊接钢筋骨架 两种形式。 5、钢筋混凝土构件破坏有两种类型: 塑性破坏 和 脆性破坏 。 6、 受弯构件正截面承载力计算 的截面设计是根据截面上的 计算弯矩 ,选定 材料 、确定 截面尺寸

14、和 配筋 的计算。 7、受压钢筋的存在可以提高截面的 延性 ,并可减少长期荷载作用下的 变形 。 8、将空心板截面换算成等效的工字形截面的方法,是根据 面积 、 惯 性矩 和 形心位置 不变的原则。 9、 T 形截面按受压区高度的不同可分为两类: 第一类 T 形截面 和 第二类 T 形截面 。 10、 工字形、箱形截面以及空心板截面,在正截面承载力计算中均按 T 形截面 来处理。 (二)判断题 1、 判断一个截面在计算时是否属于 T 形截面,不是看截面本身形状,而是要看其翼缘板是否参加抗压作用。 【】 2、 当梁截面承受异号弯矩作用时,可以采用单筋截面。 【】 3、 少筋梁破坏是属于塑性破坏。

15、 【】 4、 水平纵向钢筋其作用主要是在梁侧面发生裂缝后,可以减少混凝土裂缝宽度。 【】 5、 当承受正弯矩时,分布钢筋应放置在受力钢筋的上侧。 【】 (三)名词解释 1、 控制截面 所谓控制截面,在等截面构件中是指计算弯矩(荷载效应)最大的截面;在变截面构件中则是指截面尺寸相对较小,而计算弯矩相对较大的截面。 2、 最大配筋率 max 当配筋率增大到使钢筋屈服弯矩约等于梁破坏时的弯矩时,受拉钢筋屈服与压区混凝土压碎几乎 同时发生,这种破坏称为平衡破坏或界限破坏,相应的配筋率 称为 最大配筋率。 3、 最小配筋率 min 当配筋率减少,混凝土的开裂弯矩等于拉区钢筋屈服时的弯矩时,裂缝一旦出现,

16、应力立即达到屈服强度,这时的配筋率称为最小配筋率。 备注: 最小配筋率 min 是少筋梁与适筋梁的界限。当梁的配筋率由 min 逐渐减小,梁的工作特性也从钢筋混凝土结构逐渐向素混凝土结构过渡,所以, min 可按采用最小配筋率min 的钢筋混凝土梁在破坏时,正截面承载力 uM 等于同样截面尺寸、同样材料的素混凝土梁正截面开裂弯矩标准值的原则确定。 (四)简答题 1、 设计受弯构件时,一般应满足哪两方面的要求? 答: 由于弯矩的作用,构件可能沿某个正截面(与梁的纵轴线或板的中面正交时的面)发生破坏,故需进行正截面承载力计算; 由于弯矩和剪力的共同作用,构件可能沿剪压区段内的某个斜截面发生破坏,故

17、还需进行斜截面承载力计算。 2、 简述分布钢筋的作用? 5 答: 分布钢筋的作用是将板面上的荷载作用更均匀的传布给受力钢筋,同时在施工中可以固定受力钢筋的位置,而且用它来分担混凝土收缩和温度变化引起的应力。 3、 简述受弯构件正截面工作的三个阶段? 答: 在第一阶段梁没有裂缝,在第二阶段梁带裂缝工作,在第三阶段裂缝急剧开展,纵向受力钢筋应力维持在屈服强度不变。 4、 简述钢筋混凝土梁的受力特点? 答: 钢筋混凝土梁的截面正应力状态随着荷载的增大不仅有数量上的变化,而且有性质上的改变,即应力分布图形的改变。不同的受力阶段,中和轴的位置及内力偶臂是不同的。因 此,无论压区混凝土的应力或是纵向受拉钢

18、筋的应力,不像弹性匀质材料梁那样完全与弯矩成比例。 梁的大部分工作阶段中,受拉区混凝土已开裂。随着裂缝的开展,压区混凝土塑性变形的发展,以及粘结力的逐渐破坏,均使梁的刚度不断降低。因此梁的挠度、转角与弯矩的关系也不完全服从弹性匀质梁所具有的比例关系。 5、 简述适筋梁、超筋梁、少筋梁的破坏特征? 答: 适筋梁的破坏特征是:受拉区钢筋首先达到屈服强度,其应力保持不变而产生显著的塑性伸长,直到受压边缘混凝土的应变达到混凝土的极限压应变时,受压区出现纵向水平裂缝,随之压碎而破坏。 这种梁破坏前,梁的裂缝急剧开展,挠度较大,梁截面产生较大的塑性变形,因而有明显的破坏预兆。 超筋梁的破坏特征是;破坏时受

19、压区混凝土被压坏,而拉区钢筋应力远未达到屈服强度。破坏前梁的挠度及截面曲率曲线没有明显的转折点,拉区的裂缝开展不宽,延伸不高,破坏是突然的,没有明显的预兆。 少筋梁的破坏特征是:梁拉区混凝土一开裂,受拉钢筋达到屈服,并迅速经历整个流幅二进入强化阶段,梁仅出现一条集中裂缝,不仅宽度较大,而且沿梁高延伸很高,此时受压区混凝土还未压坏,裂缝宽度已很宽,挠度过大,钢筋甚至被拉断。破坏很突然,少筋梁 在桥梁工程中不允许采用。 (五)计算题 1、 已知 一钢筋混凝土 单筋矩形 截面梁, 截面尺寸 b h=250mm 500mm( h0=455mm) ,截面处弯矩组合设计值 Md=115KN m, 采用 C

20、20 混凝土 ( MPa,fcd 2.9 MPaftd 06.1 )和 HRB335 级钢筋 ( MPafsd 280 ) 。 类环境条件,安全等级为二级( 0.10 ) , 56.0b 。计算所需要的受拉钢筋 的 截面面积 sA 。 解: 本题为单筋矩形 截面 梁截面设计 类型 题,请按照以下三个步骤进行计算: 第一步:计算截面抵抗矩系数 s 2 4 2.04 5 52 5 02.9 101 1 50.1 26200 bhf Mcd ds 第二步:计算混凝土受压区相对高度 282.0242.0211211 s min 其中: min =max 2.0,45 sdtdff=max 2.0,28

21、006.145=0.2% 于是,所需要的受拉钢筋的截面面积 sA =1054mm2 2、 已知一 钢筋混凝土 矩形 截面梁,截面尺寸 限定 为 b h=200mm 400mm,采用 C20 混凝土( MPa,fcd 2.9 MPaftd 06.1 )和 HRB335级钢筋( MPafsd 280 , MPafsd 280/ ),弯矩 组合设计值 Md=80KN m。 类环境条件,安全等级为一级( 1.10 ), 56.0b 。试进行配筋计算 。 解:本题为 双 筋矩形 截面 梁截面设计的 第一种 类型题 ,请按照以下步骤进行计算: 说明:在不允许增加梁的截面尺寸和提高混凝土强度等级的情况下,如

22、单筋梁出现超筋,则可采用按双筋梁进行设计。 受压钢筋按一层布置,假设 mmas 35 ;受拉钢筋按二层布置,假设 mmas 65 ,h0=400-65=335mm,弯矩计算值为 mKNMM d 88801.10 。 第一步: 验算是否需要采用双筋截面。单筋矩形截面的最大正截面承载力为 )5.01(20 bbcdu bhfM =9.2 200 3352 0.56 (1-0.5 0.56)=83.26KN m88 KN m 故需要采用双筋截面。 第二步:首先计算单筋梁部分,让单筋梁充分发挥作用(即令 b ) ,求受压钢筋的面积 sA 226020 4.56)353 3 5(2 8 0 )56.05

23、.01(56.03 3 52 0 02.91088)( )5.01( mmahf bhfMA ssd bbcds 第三 步 : 根据平衡条件,求受拉钢筋的截面面积 sA 2/ 1 2 8 92 8 0 4.562 8 03 3 556.02 0 02.9 mmf AfbxfAsdssdcds 于是,受拉区所需要的 受拉 钢筋总面积是 1289mm2。 7 受压区所需要 的受压钢筋总面积是 56.4mm2。 3、 已知一钢筋混凝土 双筋 矩形截面梁, 其 截面尺寸为 b h=200mm 400mm,采用 C30混凝土( MPa,fcd 8.13 MPaftd 39.1 )和 HRB335 级钢筋

24、( MPafsd 280 ,MPafsd 280/ ), 承受的 弯矩组合设计值 mKNM d 150 ,受压区已经配置了 2 根直径为16mm 的受压钢筋。 类环境条件,安全等级为 二 级 ( 0.10 ), 56.0b 。试 求受拉钢筋的面积。 解:本题为 双 筋矩形 截面 梁截面设计的 第二种 类型题,请按照以下步骤进行计算: 受压钢筋按一层布置, mmas 35 ;受拉钢筋按二层布置,假设 mmas 65 ,h0=400-65=335mm,弯矩计算值为 mKNM d 1501500.10 。 第一步: 计算 单筋矩形截面的最大正截面承载力为 )5.01(20 bbcdu bhfM =1

25、3.8 200 3352 0.56 (1-0.50.56)=124.89KN m150 KN m 故需要采用双筋截面。 第二步:首先计算 “钢筋” 梁部分 (又称第二部分截面) , 求受拉钢筋的截面面积 2sA 22/2 4 0 22 8 016422 8 0 mmfAfAsdSsds 第三步:计算单筋梁部分(实质上为单筋矩形截面截面设计),求受拉钢筋截面面积 1sA 3 7 5.03 3 52 0 08.13 )353 3 5(4 0 22 8 0101 5 00.1)( 262020 bhf MMcddds 5.0375.0211211 s 56.0B 201 1 6 5 12 8 08.

26、133 3 52 0 05.0 mmffbhAsdcds 于是,所需要的受拉钢筋的总面积为 221 2 0 5 34 0 21 6 5 1 mmAAA sss 4、 已知翼缘位于受压区的 钢筋混凝土单筋 T 形简支梁,其 截面尺寸 b h=160mm1000mm, mmmmhb ff 1 1 01 6 0 0 , 承受的跨中截面弯矩组合设计值 mKNM d 1800 ,采用 C25 混凝土 ( MPa,fcd 5.11 MPaftd 23.1 ) 和 HRB335 级钢筋 ( MPafsd 280 ,8 MPafsd 280/ ), 类环境条件,安全等级为一级( 1.10 ), 56.0b 。

27、 求受拉钢筋截面面积 sA 。 解:本题为第二类 T 形截面截面设计类型题,请按照以下步骤进行计算。 设 T 形截面受拉钢筋为两排,取 mmas 80 ,则 mmh 9 2 0801 0 0 00 。 第一步:判别 T 形截面的类型。 mKNhhhbf fffcd 76.1 7 5 0)21 1 09 2 0(1 1 01 6 0 05.11)2( 0 mKNM d 198018001.10 故属于第二类 T 形截面。 第二步:首先计算“翼缘”梁部分(也称第二部分截面),求受拉钢筋面积 2sA 。 2/2 7.6 5 0 5280 110)1601 6 0 0(5.11)( mmf hbbfA

28、sdffcds 第三步: 计算单筋梁部分(实质上为单筋矩形截面截面设计),求受拉钢筋截面面积 1sA 1 4 4.09 2 01 6 05.11)21 1 09 2 0(1 1 0)1 6 01 6 0 0(5.11101 8 0 00.1)(2620 20 bhfMMcddds 156.0144.0211211 s 56.0B 201 13.943280 5.11920160156.0 mmffbhAsdcds 于是,所需要的受拉钢筋的总面积为 221 83.7 4 4 87.6 5 0 513.9 4 3 mmAAA sss 第四章 受弯构件斜截面承载力计算 一、学习重点 通过本章的学习,

29、应了解简支梁剪弯区的应力状态,斜截面可能出现的破坏形态及影响斜截面抗剪承载力的主要因素,掌握斜截面抗剪承载力计算图式及其计算原理,能运用公路桥规公式并进行腹筋设计,进而结合前面几章所学 的 内容能完 整地设计各类截面的钢筋混凝土简支梁。 二、复习题 (一)填空题 1、 一般把箍筋和弯起(斜)钢筋统称为梁的 腹筋 ,把配有纵向受力钢筋和腹筋的梁称为 有腹筋梁 ,而把仅有纵向受力钢筋而不设腹筋的梁称为无腹筋梁。 9 2、 钢筋混凝土受弯构件沿斜截面的主要破坏形态有 斜压破坏 、 斜拉破坏 和 剪压破坏 等。 3、 影响有腹筋梁斜截面抗剪能力的主要因素有: 剪跨比 、 混凝土强度 、 纵向受拉钢筋配

30、筋率 、 配箍率和箍筋强度 。 4、 钢筋混凝土梁沿斜截面的主要破坏形态有斜压破坏、斜拉破坏和剪压破坏等。在 设计时, 对于斜压和斜拉破坏,一般是采用 截面限制条件 和 一定的构造措施 予以 避免,对于常见的剪压破坏形态,梁的斜截面抗剪能力变化幅度较大,故必须进行斜截面抗剪承载力的计算 。 公路桥规规定,对于配有腹筋的钢筋混凝土梁斜截面抗剪承载力的计算采用下属半经验半理论的公式: ssbsdsvsvkcuud AfffpbhVV s i n)1075.0()6.02()1045.0( 3,033210 5、 对于已经设计好的等高度钢筋混凝土简支梁进行全梁承载能力校核,就是进一步检查梁沿长度上的

31、截面的 正截面抗弯承载力 、 斜截面抗剪承载力 和 斜截面抗弯承载力 是否满足要求。 (二)判断题 1、 在斜裂缝出现前,箍筋中的应力就很大,斜裂缝出现后,与斜裂缝相交的箍筋中的应力突然减小,起到抵抗梁剪切破坏的作用。 【】 2、 箍筋能把剪力直接传递到支座上。 【】 3、 配置箍筋是提高梁抗剪承载力的有效措施。 【】 4、 梁的抗剪承载力随弯筋面积的加大而提高,两者呈线性关系。 【】 5、 弯筋不宜单独使用,而总是与箍筋联合使用。 【】 6、 试验表明,梁的抗剪能 力随纵向钢筋配筋率的提高而减小。 【】 7、 连续梁的抗剪承载力比相同广义剪跨比的简支梁抗剪承载力要低。 【】 (三)名词解释

32、1、 剪跨比 m 剪跨比 m 是一个无量纲常数,用0VhMm 来表示,此处 M 和 V 分别为剪压区段中某个竖直截面的弯矩和剪力, h0 为截面有效高度。 2、抵抗弯矩图 抵抗弯矩图又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能 产生的抵抗弯矩图,即表示个正截面所具有的抗弯承载力。 (四)简答题 1、 对于无腹筋梁,斜裂缝出现后,梁内的应力状态有哪些变化? 答: 斜裂缝出现前,剪力由梁全截面抵抗。但斜裂缝出现后,剪力仅由剪压面抵抗,后者的面积远小于前者。所以斜裂缝出现后,剪压区的剪应力显著增大;同时,剪压区的压应力也要增大。这是斜裂缝出现后应力重分布的一个表现。 斜裂缝出现前,截

33、面纵筋拉应力由截面处的弯矩所决定,其值较小。在斜裂缝出现后,截面处的纵筋拉应力则由剪压面处弯矩决定。后者远大于前者,故纵筋拉应力显著增大,这是应力重分布的另一个 表现。 2、 简述无腹筋简支梁沿斜截面破坏的三种主要形态? 答: 斜拉破坏:在荷载作用下,梁的剪跨段产生由梁底竖直裂缝沿主压应力轨迹线向上延伸发展而成斜裂缝。其中有一条主要斜裂缝(又称临界斜裂缝)很快形成,并迅速伸展至荷载垫板边缘而使混凝土裂通,梁被撕裂成两部分而丧失承载力,同时,沿纵向钢筋往往伴随产生水平撕裂裂缝。这种破坏发生突然,破坏面较整齐,无压碎现象。 10 剪压破坏: 梁在弯剪区段内出现斜裂缝,随着荷载的增大,陆续出现几条斜

34、裂缝,其中一条发展成为临界裂缝。临界斜裂缝出现后,梁还能继续增加荷载,斜裂缝伸展至荷载 垫板下,直到斜裂缝顶端(剪压区)的混凝土在正应力、剪应力和荷载引起的竖向局部压应力的共同作用下被压酥而破坏,破坏处可见到很多平行的斜向短裂缝和混凝土碎渣。 斜压破坏: 当剪跨比较小时,首先是加载点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝,梁腹被分割成若干倾斜的小柱体。随着荷载的增大,梁腹发生类似混凝土棱柱体被压坏的情况,即破坏时斜裂缝 多而密,但没有主裂缝。 3、 在斜裂缝出现后,腹筋的作用表现在哪些方面? 答: 把开裂拱体向上拉住,使沿纵向钢筋的撕裂裂缝不发生,从而使纵筋的销栓作用得以发

35、挥,这 样,开裂拱体就能更多地传递主压应力;腹筋将开裂拱体传递过来的主压应力传到基本拱体上断面尺寸较大还有潜力的部位上去,这就减轻了基本拱体上拱顶所承压的应里,从而提高了梁的抗剪承载力;腹筋能有效地减小斜裂缝开展宽度,从而提高了斜截面上的骨料咬合力。 第五章 受扭构件承载力计算 一、学习重点 本章简要介绍了钢筋混凝土纯扭构件的破坏特征和公路桥规关于受扭构件的承载力计算公式及其适用条件。并举例说明了公路桥规 关于弯、扭、剪复合受力时所采用的简单“叠加”方法。 二、复习题 (一)填空 题 1、 钢筋混凝土构件抗扭性能的两个重要衡量指标是: 构件的开裂扭矩 和 构件的破坏扭矩 。 2、 在纯扭作用下

36、,构件的裂缝总是与构件纵轴成 45 度 方向发展。 3、 矩形截面 钢筋混凝土 受扭构件的开裂扭矩,只能近似地采用 理想 塑性 材料的 剪 应力图形进行计算, 同时通过试验来加以校正。 4、 实际工程中通常都采用由 箍筋 和 纵向钢筋 组成的空间骨架来承担扭矩,并尽可能地在保证必要的保护层厚度下,沿截面周边布置钢筋,以增强 抗扭能力 。 5、 在抗扭钢筋骨架中,箍筋的作用是直接抵抗 主拉应力 ,限制裂缝的发展;纵筋用来平衡构件中的 纵向分力 ,且在斜裂缝处纵筋可产生销栓作用,抵抗部分扭矩并可抑制斜裂缝的开展。 6、 极限扭矩和抗扭刚度的大小在很大程度上取决于 抗扭钢筋 的数量。 7、 根据 抗

37、扭 配筋率的多少,钢筋混凝土矩形截面受扭构件的破坏形态一般可分为以下几种: 少筋破坏 、 适筋破坏 、 超筋破坏 和 部分超筋破坏 。 8、 纵筋的数量、强度 和 箍筋的数量、强度 的比例对抗扭强度有一定的影响。 9、 T 形 、 形 截面可看成是 由简单矩形截面所组成的复杂截面,每个矩形截面所受的扭矩,可根据各自的 抗扭刚度 按正比例进行分配。 10、 由于箱形截面具有 抗扭刚度大 、 能承受异号弯矩 且 底部平整美观 等优点,因此在连续梁桥、曲线梁桥和城市高架桥中得以广泛采用。 (二)判断题 1、 对于弯、剪扭共同作用下的构件配筋计算,采取先按弯矩、剪力、扭矩各自单独作用下进行配筋计算,然后按纵筋和箍筋进行叠加进行截面设计的方法。 【】

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 教育教学资料库 > 复习参考

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。