精选优质文档-倾情为你奉上函数和不等式结的恒成立问题的解法“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用恒成立问题的基本类型:一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立; 2)对恒成立 例1:若不等式的解集是R,求m的范围。 例2 设函数f(x) mx2-mx-1(1)若对于一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m5恒成立,求m的取值范围二、最值法 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例1、若时,不等式恒成立,求的取值范围。例2设,当时,恒成立,求实数