精选优质文档-倾情为你奉上章节第三章 微分中值定理与导数的应用1 微分中值定理 课时2教学目的掌握三个中值定理的内容教学重点及突出方法中值定理的证明教学难点及突破方法利用中值定理证明的技巧。相关参考资料高等数学(第一册)(物理类),文丽,吴良大编,北京大学出版社大学数学 概念、方法与技巧(微积分部分),刘坤林,谭泽光编,清华大学出版社教学过程教学思路、主要环节、主要内容在给出微分学中值定理的数学定义之前,我们先从几何的角度看一个问题,如下:设有连续函数,a与b是它定义区间内的两点(ab,假定此函数在(a,b)处处可导,也就是在(a,b)内的函数图形上处处都由切线,那末我们从图形上容易看到, 差商就是割线AB的斜率,若我们把割线AB作平行于自身的移动,那么至少有一次机会达到离割线最远的一点P(x=c)处成为曲线的切线,而曲线的斜率为,由于切线与割线是平行的,因此 成立。 注:这个结
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。