精选优质文档-倾情为你奉上 二阶常系数齐次线性微分方程 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y+py+qy=0称为二阶常系数齐次线性微分方程, 其中p、q均为常数. 如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y=C1y1+C2y2就是它的通解. 我们看看, 能否适当选取r, 使y=erx 满足二阶常系数齐次线性微分方程, 为此将y=erx代入方程 y+py+qy=0得 (r 2+pr+q)erx =0. 由此可见, 只要r满足代数方程r2+pr+q=0, 函数y=erx就是微分方程的解. 特征方程: 方程r2+pr+q=0叫做微分方程y+py+qy=0的特征方程. 特征方程的两个根r1、r2可用公式 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r1、r2时, 函数、是方程的
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。